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Two groups and two periods difference-in-differences

• Potential outcomes: Yt(g)

• Individual treatment effect: Y1(1)− Y1(0)

• Problem: unmeasured confounding between Y1(g) and G

• Assuming no anticipation and parallel trends, ATT is identifiable,

E{Y1(1)− Y1(0) | G = 1} = E{∆Yt | G = 1} − E{∆Yt | G = 0}

G = 1

G = 0

t = 0 t = 1

Dt = 0 Dt = 1

Dt = 0Dt = 0

ΔYt(1) = Y1 – Y0

ΔYt(0) = Y1 – Y0
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Staggered treatment adoption

• Potential outcomes: Yt(g)

• Individual treatment effect in group g and period t: Yt(g)− Yt(∞)

G = 1

G = 2

Dt = 0

t = 0 t = 1 t = 2 t = 3

G = 3

G = ∞

Dt = 0

Dt = 0

Dt = 0

Dt = 1

Dt = 0

Dt = 0

Dt = 0

Dt = 1

Dt = 1

Dt = 0

Dt = 0

Dt = 1

Dt = 1

Dt = 1

Dt = 0
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Staggered treatment adoption

• Question 1: How to define the treatment effects? — Science

• Question 2: How to identify the treatment effects? — Learnability

• Question 3: How to estimate the treatment effects? — Tool

G = 1

G = 2

Dt = 0

t = 0 t = 1 t = 2 t = 3

G = 3

G = ∞

Dt = 0

Dt = 0

Dt = 0

Dt = 1

Dt = 0

Dt = 0

Dt = 0

Dt = 1

Dt = 1

Dt = 0

Dt = 0

Dt = 1

Dt = 1

Dt = 1

Dt = 0

5 / 39



Two-way fixed effects model and event study

Two-way fixed effects (TWFE) model

Yt = αDt + λt + γG + βX + εt

• α is an overall treatment effect

• α is an average of group-period treatment effects with negative weights

Event study

Yt =
T−1∑
k=0

αk I (t − G = k) + λt + γG + βX + εt

• αk is the dynamic treatment effect

Problem: Model-based methods mix up “science” and “tool”
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Notations

• T + 1 periods: t = 0, . . . ,T

• Treatment (D0 = 0,D1, . . . ,DT ), equivalently characterized by G ∈ {1, . . . ,T ,∞}
• Potential outcome Yt(g) := Yt(d0 = 0, d1, . . . , dT ), with g = min{t : dt = 1}
• Time-varying covariates Xt

• Observed data: O = (G ,X0,Y0, . . . ,XT ,YT )

• Sample: {Oi : i = 1, . . . , n}
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Science: Treatment effects (model-free)

• Group-period ATT
τg ,t = E{Yt(g)− Yt(∞) | G = g}

G = 1

G = 2

t = 0 t = 1 t = 2 t = 3

G = 3

G = ∞
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Science: Aggregating treatment effects

• Groupwise ATT

τg =
1

T − g + 1

T∑
t=g

τg ,t

G = 1

G = 2

t = 0 t = 1 t = 2 t = 3

G = 3

G = ∞

9 / 39



Science: Aggregating treatment effects

• Periodwise ATT

τt =
1∑t

g=1 P(G = g)

t∑
g=1

P(G = g)τg ,t

G = 1

G = 2

t = 0 t = 1 t = 2 t = 3

G = 3

G = ∞
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Science: Aggregating treatment effects

• Dynamic ATT

τs =
1∑T

t=s+1 P(G = t − s)

T∑
t=s+1

P(G = t − s)τt−s,t

G = 1

G = 2

t = 0 t = 1 t = 2 t = 3

G = 3

G = ∞
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Science: Aggregating treatment effects

• Overall ATT

τ =
1∑T

g=1(T − g + 1)P(G = g)

T∑
g=1

T∑
t=g

P(G = g)τg ,t

G = 1

G = 2

t = 0 t = 1 t = 2 t = 3

G = 3

G = ∞

12 / 39



Learnability: Assumptions for identifiability

• Assumption 1: No anticipation if unexposed

Yt(g) = Yt(∞) for every t < g

• Assumption 2: Parallel trends for the counterfactual increase in potential outcomes

E{∆Yt(∞) | Xt ,G} = E{∆Yt(∞) | Xt}

• Assumption 3: Positivity

η < P(G = g | Xt) < 1− η for some constant η > 0

• Assumption 4: Consistency
Yt(G ) = Yt
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An example

• Baseline covariate Z , time-varying covariate Zt

• Time-invariant unmeasured confounder U

• Causal structural model
Yt(∞) = ft(Z ,Zt) + U + εt

where εt is exogenous random error

• Then
E{∆Yt(∞) | Z ,Zt ,Zt−1,G} = ft(Z ,Zt)− ft−1(Z ,Zt−1)

does not depend on G

• Xt = (Z ,Zt ,Zt−1) adjusts the parallel trends

• In general, Xt can include either baseline or history

14 / 39



Identifiability

• Covariates shift from control groups to treated groups

• Under these assumptions,

τg ,t = E{Yt(g)− Yt(∞) | G = g}

= E (Yt − Yg−1 | G = g)−
t∑

k=g

E{E (Yk − Yk−1 | Xk ,G = ∞) | G = g}

• As a result, group-period, groupwise, periodwise, dynamic, and overall ATTs are all
identifiable
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Estimation based on regression

• Model: conditional change in outcomes δg ,t(Xt) = E (∆Yt | Xt ,G = g)

• Motivated by the identification formula,

τ̃ idg ,t =
1

Pn{I (G = g)}
Pn

[
I (G = g)

{
Yt − Yg−1 −

t∑
k=g

δ̂∞,k(Xk)
}]

• Regression (imputation) estimator

τ̃ regg ,t =
1

Pn{I (G = g)}
Pn

[
I (G = g)

t∑
k=g

{
δ̂G ,k(Xk)− δ̂∞,k(Xk)

}]
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Estimation based on weighting

• Model: propensity score πg ,t(Xt) = P(G = g | Xt)

• Weighting estimator using the never-treated group as a reference

τ̂wt,ntg ,t =
1

Pn{I (G = g)}
Pn

[
I (G = g)(Yt − Yg−1)−

t∑
k=g

πg ,k(Xk)

π∞,k(Xk)
I (G = ∞)∆Yk

]
• Weighting estimator using not-yet-treated groups as a reference

τ̂wt,nyg ,t =
1

Pn{I (G = g)}
Pn

[
I (G = g)(Yt − Yg−1)−

t∑
k=g

πg ,k(Xk)∑
l>k πl ,k(Xk)

I (G > k)∆Yk

]
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Motivation to improve efficiency

How to improve efficiency?

• Key 1: Using not-yet-treated groups to determine parallel trends period by period

• Key 2: Using control groups that have smaller variation to determine time trends

G = 1

G = 2

t = 0 t = 1 t = 2 t = 3

G = 3

G = ∞

δ∞,3(X3)δ∞,2(X2)δ∞,1(X1)
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Proposed AIVW estimator

• Variance of conditional change σ2
g ,t(Xt) = var(∆Yt | Xt ,G = g).

• Weight by the inverse of variance

Wl ,k(Xk) =

[∑
s>k

πs,k(Xk)

σ2
s,k(Xk)

]−1
πl ,k(Xk)

σ2
l ,k(Xk)

• Augmented inverse variance weighting (AIVW) estimator

τ̂g ,t =
1

Pn{I (G = g)}
Pn

[
I (G = g)

t∑
k=g

{
∆Yk − δ̂∞,k(Xk)

}
−

t∑
k=g

I (G > k)
π̂g ,k(Xk)

π̂G ,k(Xk)
ŴG ,k(Xk)

{
∆Yk − δ̂∞,k(Xk)

}]
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Proposed AIPW estimator

• Homoskedastic working model: σ2
g ,t(Xt) is a constant

• Augmented inverse probability weighting (AIPW) estimator

τ̂g ,t =
1

Pn{I (G = g)}
Pn

[
I (G = g)

t∑
k=g

{
∆Yk − δ̂∞,k(Xk)

}
−

t∑
k=g

I (G > k)
π̂g ,k(Xk)∑
l>k π̂l ,k(Xk)

{
∆Yk − δ̂∞,k(Xk)

}]
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Proposed estimators for aggregated ATTs

• Aggregating to groupwise, periodwise, dynamic, and overall ATTs

τ̂g =
1

T − g + 1

T∑
t=g

τ̂g ,t

τ̂t =
1

Pn{I (G ≤ t)}

t∑
g=1

Pn{I (G = g)}τ̂g ,t

τ̂s =
1∑T

t=s+1 Pn{I (G = t − s)}

T∑
t=s+1

Pn{I (G = t − s)}τ̂t−s,t

τ̂ =
1∑T

g=1(T − g + 1)Pn{I (G = g)}

T∑
g=1

T∑
t=g

Pn{I (G = g)}τ̂g ,t
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Consistency and double robustness

• Suppose that either the {δ̂·,·(·)} or {π̂·,·(·)} is correctly specified (in L1-norm)

• In addition, suppose the models belong to a Glivenko–Cantelli class

• Then τ̂g ,t is consistent for τg ,t (similar for other ATTs)

• Consistent estimation does not require correct specification of σ2
·,·(·)

• Double robustness for both AIVW and AIPW
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Asymptotic normality

• Suppose that the estimated models {δ̂·,·(·), π̂·,·(·), σ̂2
·,·(·)} converge to the true value at a

rate of op(n
−1/4) (in L2-norm)

• In addition, suppose the models belong to a Donsker class

• Then
√
n(τ̂g ,t − τg ,t)

d−→ N(0,Eφ2
g ,t) (similar for other ATTs)

• Influence function of τg ,t by AIVW

φg ,t =
1

P(G = g)

[
I (G = g)

t∑
k=g

{
∆Yk − δ∞,k(Xk)

}
− I (G = g)τg ,t

−
t∑

k=g

I (G > k)
πg ,k(Xk)

πG ,k(Xk)
WG ,k(Xk)

{
∆Yk − δ∞,k(Xk)

}]
• Similar asymptotic normality for AIPW
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Semiparametric efficiency

When is the AIVW estimator most efficient?

• If Xt = Ht is the entire history (including historical time-varying covariates and observed
outcomes), then the AIVW estimator is semiparametrically most efficient

• If ∆Yt is generated based solely on (G ,Xt), then the AIVW estimator is
semiparametrically most efficient
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Estimation for AIPW connected with outcome regression

• Linear model with interaction for outcome regression

Yt =
T−1∑
k=0

αk I (t − G = k) + λt + γG + β1Xt + β2XtDt + β3Xtt + εt

• Counterfactual mean outcome under control

µ0
g ,t(Xt) = λt + γg + β1Xt + β3Xtt.

• Ordinal logistic regression for propensity score

ORk,t(Xt) =
P(G ≤ k | Xt)

P(G > k | Xt)
=

∑
s≤k πs,t(Xt)∑
s>k πs,t(Xt)

= exp(ζkt0 + ζktXt),
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Influence function as weighted sum of residuals

• Define

HG ,t = Dt − (T − G + 1)I (t = G − 1)

− ORG ,t(Xt)(T − t + 1)I (G > t) + ORG ,t+1(Xt+1)(T − t)I (G > t + 1)

• The influence function of τ is

φ =
1

(T + 1)P(Dt = 1)

T∑
t=0

HG ,t{Yt − µ0
G ,t(Xt)− Dtτ}

• Solving Pnφ̂ = 0, the AIPW estimator τ̂ is the average of ĤG ,t{Yt − µ̂0
G ,t(Xt)} in the

sample {(i , t) : Dti = 1}
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Simulation settings

Data generation

• Two baseline covariates Z1 and Z2

• A time-varying covariate Z3,t

• Potential outcome Yt(g) generated based on Z1, Z2, Z3,t , G , plus random error

• Xt = (Z1,Z2,Z3,t ,Z3,t−1)

Methods under comparison

• Two-way fixed effects model

• Doubly robust estimators (never-treated, not-yet-treated) by Callway and Sant’Anna
(2021)

• Proposed AIPW and AIVW
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Simulation results for ATT: Homoskedastic errors

(A) Scenario 1: Homogeneous effects Scenario 2: Heterogeneous effects
Homoskedastic error terms Homoskedastic error terms

n TWFE DRnt DRny AIPW AIVW TWFE DRnt DRny AIPW AIVW

100 Bias 0.187 0.005 0.007 0.005 0.006 -0.265 -0.186 -0.185 -0.006 -0.003
SD 0.229 0.303 0.290 0.256 0.259 0.237 0.314 0.300 0.264 0.268
SE 0.269 0.291 0.279 0.253 0.255 0.284 0.301 0.290 0.263 0.265
CP 0.930 0.939 0.935 0.944 0.942 0.889 0.881 0.887 0.942 0.937

500 Bias 0.181 0.004 0.004 0.001 0.001 -0.241 -0.154 -0.154 0.021 0.021
SD 0.105 0.123 0.122 0.110 0.110 0.109 0.128 0.127 0.114 0.115
SE 0.121 0.125 0.123 0.111 0.111 0.127 0.131 0.128 0.116 0.116
CP 0.702 0.952 0.946 0.964 0.961 0.516 0.782 0.783 0.952 0.953

2000 Bias 0.184 0.004 0.004 0.004 0.004 -0.274 -0.189 -0.189 -0.011 -0.010
SD 0.055 0.062 0.062 0.056 0.056 0.057 0.065 0.064 0.057 0.057
SE 0.060 0.062 0.061 0.056 0.056 0.063 0.065 0.064 0.058 0.058
CP 0.121 0.948 0.946 0.946 0.949 0.006 0.171 0.161 0.942 0.945
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Simulation results for ATT: Heteroskedastic errors

(B) Scenario 3: Homogeneous effects Scenario 4: Heterogeneous effects
Heteroskedastic error terms Heteroskedastic error terms

n TWFE DRnt DRny AIPW AIVW TWFE DRnt DRny AIPW AIVW

100 Bias 0.184 -0.001 0.000 -0.001 -0.000 -0.268 -0.192 -0.191 -0.011 -0.010
SD 0.221 0.253 0.257 0.237 0.227 0.230 0.265 0.269 0.245 0.236
SE 0.277 0.242 0.245 0.235 0.223 0.291 0.254 0.258 0.245 0.234
CP 0.952 0.931 0.933 0.939 0.939 0.908 0.855 0.860 0.939 0.943

500 Bias 0.181 0.003 0.003 -0.001 -0.001 -0.241 -0.156 -0.155 0.019 0.019
SD 0.101 0.110 0.112 0.103 0.097 0.105 0.116 0.118 0.108 0.102
SE 0.124 0.110 0.112 0.104 0.099 0.130 0.115 0.117 0.109 0.104
CP 0.721 0.946 0.940 0.955 0.953 0.553 0.732 0.737 0.951 0.952

2000 Bias 0.184 0.003 0.003 0.003 0.003 -0.274 -0.190 -0.190 -0.012 -0.012
SD 0.053 0.055 0.057 0.052 0.049 0.055 0.058 0.060 0.053 0.051
SE 0.062 0.055 0.056 0.052 0.049 0.065 0.058 0.059 0.054 0.052
CP 0.126 0.956 0.953 0.951 0.946 0.003 0.096 0.107 0.950 0.958
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Simulation results for ATT: Cumulative errors

(C) Scenario 5: Homogeneous effects Scenario 6: Heterogeneous effects
Cumulative error terms Cumulative error terms

n TWFE DRnt DRny AIPW AIVW TWFE DRnt DRny AIPW AIVW

100 Bias 0.183 -0.018 -0.018 -0.011 -0.010 -0.269 -0.210 -0.210 -0.021 -0.020
SD 0.241 0.316 0.305 0.286 0.284 0.249 0.327 0.316 0.293 0.292
SE 0.321 0.282 0.277 0.278 0.275 0.333 0.293 0.288 0.287 0.284
CP 0.962 0.908 0.915 0.936 0.939 0.942 0.840 0.842 0.943 0.936

500 Bias 0.180 -0.001 -0.001 -0.001 -0.002 -0.243 -0.160 -0.160 0.018 0.018
SD 0.107 0.130 0.127 0.122 0.120 0.110 0.135 0.132 0.125 0.124
SE 0.145 0.131 0.128 0.125 0.124 0.150 0.135 0.133 0.129 0.128
CP 0.833 0.946 0.946 0.958 0.957 0.687 0.770 0.777 0.953 0.953

2000 Bias 0.183 0.003 0.003 0.003 0.003 -0.275 -0.191 -0.191 -0.012 -0.012
SD 0.055 0.067 0.065 0.062 0.062 0.056 0.070 0.068 0.064 0.063
SE 0.073 0.065 0.064 0.063 0.062 0.075 0.068 0.066 0.065 0.064
CP 0.234 0.945 0.944 0.951 0.955 0.017 0.206 0.175 0.950 0.949
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Simulation results for other ATTs

• Scenario 4: heterogeneous effects, heteroskedastic errors (AIVW)
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Simulation results for other ATTs

• Scenario 4: heterogeneous effects, heteroskedastic errors (AIPW)
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Data: National College Entrance Examination (Gaokao)

Staggered adoption of the parallel mechanism across provinces

• In 2007, all 27 provinces used immediate admission (n = 27× 2, stem and non-stem)

• In 2008, 3 provinces switched to parallel admission (G = 1)

• In 2009, 10 provinces switched to parallel admission (G = 2)

• In 2010, 6 provinces switched to parallel admission (G = 3)

• In 2011, 2 provinces switched to parallel admission (G = 4)

• 6 provinces had not been reformed by 2011 (G = ∞)

Covariates

• log GDP per capita, population, track (stem or non-stem)

• Game size, when to submit preference (after the exam, after knowing the score)
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Justified envy

Justified envy

• Student i justifiably envies student j for school s if i would rather be assigned to school
s, where some student j , who has a lower priority (i.e., lower score) than i , is assigned

• In this case, student i is a blocking student; student i and school s are a blocking pair;
student i , j , and school s are a blocking triplet

Four measures of justified envy

• Blocking students (BS)

• Blocking pairs (BP)

• Total tridimensional envy of blocking triplets (TE)

• Blocking triplets (BT)
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Effect of parallel admission on justified envy

Outcome BS (×1000) BP (×1000)

ATT (SE) P ATT (SE) P

TWFE -0.739 (0.276) 0.008** -2.460 (0.833) 0.003**
DRnt -1.512 (0.542) 0.005** -0.651 (0.728) 0.371
DRny -1.313 (0.545) 0.016* -1.542 (0.698) 0.027*
AIPW -0.578 (0.321) 0.072 -2.580 (0.829) 0.002**
AIVW -0.649 (0.322) 0.044* -2.769 (0.882) 0.002**

Outcome TE (×1000) BT (×1000)

ATT (SE) P ATT (SE) P

TWFE -3.513 (1.101) 0.002** -4.510 (1.158) 0.000***
DRnt -1.580 (0.941) 0.093 -8.826 (2.510) 0.000***
DRny -2.511 (0.908) 0.006** -7.170 (2.041) 0.000***
AIPW -3.617 (1.096) 0.001** -4.422 (1.474) 0.003**
AIVW -3.847 (1.175) 0.001** -4.458 (1.497) 0.003**
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Periodwise effect of parallel admission on justified envy (AIVW)
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Concluding remarks: Contribution

Science

• We define treatment effects that are model-free

• Group-period ATTs are aggregated to groupwise, periodwise, dynamic, and overall ATTs

Learnability

• We allow time-varying covariates to adjust for parallel trends

Tool

• We propose doubly robust AIVW and AIPW estimators for ATTs

• Estimated by the empirical average of weighted residuals on the target population

• Semiparametrically efficient under specific cases
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Concluding remarks: Limitation and future research

• AIVW is not universally efficient

• AIVW has higher finite-sample variability due to more fitted models involved

• AIPW is computationally simpler, and has comparative performance to AIVW

• Over-identification of ATTs—parallel trends are not necessary for identifiability

• How to estimate ATTs efficiently

• Targeted minimum-loss-based estimation (TMLE) to improve finite-sample performance
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