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Motivating Data 1

• Hepatitis B causes serious public health burden worldwide.

• Exposed to hepatitis B, an individual has increasing risks of both liver
cancer and mortality.

• What is the causal effect of hepatitis B on mortality mediated by liver
cancer?
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Motivating Data 2

• Allogeneic stem cell transplantation is a commonly adopted approach
to cure acute lymphoblastic leukemia (ALL).

• Human leukocyte antigen matched sibling donor transplantation
(MSDT) has long been considered as the first choice of
transplantation because of lower transplant-related mortality.

• In recent years, some benefits of haploidentical stem cell
transplantation (haplo-SCT) have been found in that haplo-SCT
results in lower relapse rate.

• What is the mechanism of transplant modality on overall mortality
(transplant-related mortality, relapse-related mortality)?
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Motivating Data 2
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Question

• The question is about mediation analysis.

• The mediator and outcome are “time to event”, subject to censoring.

• We want to know
(1) the treatment effect delivered directly to the terminal event and
(2) the treatment effect delivered indirectly through (mediated by) the
intermediate event to the termianl event.

• How to define, identify, estimate, infer and intepret the causal effect?
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Mediation Analysis at Varying Time Points

• For time-to-event data, the mediator and outcome are processes.

• The mediator (intermediate event) process N1(t) ∈ {0, 1}: whether
the intermediate event has occurred at t.

• The outcome (terminal event) process N2(t) ∈ {0, 1}: whether the
terminal event has occurred at t.

N1(t
−) N2(t) Description at time t

0 0 No intermediate event, no terminal event
0 1 No intermediate event, a terminal event
1 0 An intermediate event, no terminal event
1 1 An intermediate event, a terminal event
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Semi-Competing Risks

• Semi-competing risks refer to the phenomenon that the terminal event
can truncate the non-terminal event but not vice versa (Fine et al,
2001; Huang, 2021).

• The terminal event and non-terminal events have a competing nature,
but their roles are not the same.

• Related to the truncation-by-death problem.
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Event Processes and At-Risk Processes

• Intermediate event occurs first.
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Event Processes and At-Risk Processes

• Intermediate event does not occur.
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Formal Definition: Jumps

• Let dÑ1(t; z1) be the jump of potential event counting process for the
intermediate event during [t, t + dt) when the treatment is set at z1.

• Let dÑ2(t; z2, n1) be the jump of potential event counting process for
the terminal event during [t, t + dt) when the treatment is set at z2
and the counting process for the intermediate event at t− is set at n1.
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Formal Definition: Well Definedness

• Markovness: the hazard of jumps only relies on the current status,
not the history,

P(dÑ2(t; z2, n1) = 1 | Ñ2(t
−; z2, ñ1(·)) = 0, ñ1(t

−) = n1, ñ1(s
−) = n∗1)

= P(dÑ2(t; z2, n1) = 1 | Ñ2(t
−; z2, ñ1(·)) = 0, ñ1(t

−) = n1), s < t.

• Markovness ensures that the notation dÑ2(t; z2, n1) is well defined.

• We can manipulate the treatment z2, or we can manipulate the status
of the intermediate event n1, in order to generate a potential jump
dÑ2(t; z2, n1).
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Formal Definition: Processes

• We integrate the jumps to obtain potential counting processes.

• The potential event counting process for the intermediate event

Ñ1(t; z1) =

∫ t

0
dÑ1(s; z1).

• Given the full intermediate event process ñ1(·), the potential event
counting process for the terminal event

Ñ2(t; z2, ñ1(·)) =
∫ t

0
dÑ2(s; z2, ñ1(s

−)).
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Consistency and Cross-Worlds

• The potential time to intermediate event T̃1(z1) is the time that
Ñ1(t; z1) jumps.

• Substituting ñ1(·) with Ñ1(·; z1), the potential time to terminal event
T̃2(z1, z2) is the time that Ñ2(t; z2, Ñ1(·; z1)) jumps.

• Causal consistency:

Ñ1(t) = Ñ1(t;Z ), Ñ2(t) = Ñ2(t;Z , Ñ1(·;Z )), t ∈ [0, t∗].

• Under causal consistency, T̃1 = T̃1(Z ) and T̃2 = T̃2(Z ,Z ).
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Estimand

• The counterfactual cumulative incidence of the terminal event

F (t; z1, z2) = P(T̃2(z1, z2) ≤ t) = P(Ñ2(t; z2, Ñ1(·; z1)) = 1)

is of primary interest.

• To identify F (t; z1, z2), it is equivalent to identify the hazard

dΛ(t; z1, z2) = d log{1− F (t; z1, z2)}.

• Total treatment effect: F (t; 1, 1)− F (t; 0, 0).

• Natural direct effect: F (t; 0, 1)− F (t; 0, 0).

• Natural indirect effect: F (t; 1, 1)− F (t; 0, 1).
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Assumptions for Identification

• Ignorability: the treatment is randomized,

{dÑ1(t; z1), dÑ2(t; z2, n1) : 0 ≤ t ≤ t∗} ⊥⊥ Z .

• Random censoring:

{Ñ1(t; z), Ñ2(t; z , Ñ1(·; z)) : 0 ≤ t ≤ t∗} ⊥⊥ C | Z .

• You may consider C as a potential outcome since C is a
post-treatment value, in which case ignorability should be assumed for
C (z).
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Assumptions for Identification

• Positivity 1:

P(Ñ1(t; z1) = n1, Ñ2(t; z2, Ñ1(·; z1)) = 0) > 0

⇒P(Z = z | Ñ1(t; z) = n1, Ñ2(t; z , Ñ1(·; z)) = 0) > 0, z ∈ {0, 1},

z1, z2, n1 ∈ {0, 1}, t ∈ [0, t∗].

• Positivity 2:
P(C > t∗ | Z ) > 0.
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Observed Processes

• The event times T1 = T̃1 ∧ C and T2 = T̃2 ∧ C .

• The censoring indicators δ1 = I{T̃1 ≤ C} and δ2 = I{T̃2 ≤ C}.
• The observed counting process for the intermediate event
N∗(t; z) = I{T1 ≤ t,T2 ≥ T1, δ1 = 1,Z = z}.

• The observed at-risk process for the intermediate event
Y∗(t; z) = I{T1 ≥ t,T2 ≥ t,Z = z}.

• Hereafter we use the subscript “∗” to represent the intermediate
event, “1” to represent the terminal event with prior intermediate
event (direct terminal event), and “0” to represent the terminal event
without prior intermediate event (indirect terminal event).
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Observed Processes

• The observed counting process for the direct terminal event
N0(t; z) = I{T2 ≤ t,T1 ≥ T2, δ2 = 1,Z = z}.

• The observed at-risk process for the direct terminal event
Y0(t; z) = I{T2 ≥ t,T1 ≥ t,Z = z}.

• The observed counting process for the indirect terminal event
N1(t; z) = I{T2 ≤ t,T1 < t, δ2 = 1,Z = z}.

• The observed at-risk process for the indirect terminal event
Y1(t; z) = I{T2 ≥ t,T1 < t,Z = z}.

• Y∗(t; z) = Y0(t; z) because the intermediate event and the direct
terminal event are a pair of competing events, sharing the same
at-risk set.
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Cause-Specific Hazards

• Define the cause-specific hazard of the terminal event

dΛn1(t; z1, z2)

= P(dÑ2(t; z2, n1) = 1 | Ñ1(t
−; z1) = n1, Ñ2(t

−; z2, Ñ1(z1)) = 0).

• It involves cross-world values. How to identify the cause-specific
hazard?

• Recall the assumptions we have made: Markovness, consistency,
ignorability, random censoring, and positivity.

• Compared to mediation analysis, what assumption is lost? —
Sequential ignorability!
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Competing Events in the Cross-World

• Note that Ñ1(·) and Ñ2(·) are competing. In the cross-world (z1, z2),
Ñ2(·) relies on z1 and Ñ1(·) relies on z2.

• We need two sequential ignorability assumptions, one for Ñ2(·) and
the other for Ñ1(·).

Z

N2(t1)

N1(t1
-)

N2(t2)

N1(t2
-)

N2(t3)

N1(t3
-)

dΛn(t;z2) dΛn(t;z2)

25 / 60



Sequential Ignorability, Part 1

• Sequential ignorability (1):

P(dÑ2(t; z2, n1) = 1 | Z = z2, Ñ1(t
−; z1) = n1, Ñ2(t

−; z2, Ñ1(·; z1)) = 0)

= P(dÑ2(t; z2, n1) = 1 | Z = z2, Ñ1(t
−) = n1, Ñ2(t

−) = 0).

• At time t, given the “baseline” Z , the intermediate event status
Ñ1(t

−) = n1, and the fact that the terminal event has not occurred
Ñ2(t

−) = 0, the “treatment” dÑ2(t;Z , n1) is independent of the
potential process Ñ1(·; z1).

• This sequential ignorability excludes the cross-world reliance of
dÑ2(t; z2, n1) on z1.
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Sequential Ignorability, Part 1

• The cause-specific hazard (of the terminal event) is identifiable

dΛn1(t; z1, z2)

= P(dÑ2(t; z2, n1) = 1 | Ñ1(t
−; z1) = n1, Ñ2(t

−; z2, Ñ1(·; z1)) = 0)

= P(dÑ2(t; z2, n1) = 1 | Z = z2, Ñ1(t
−) = n1, Ñ2(t

−) = 0)

and can be estimated by Nelson–Aalen estimators,

d Λ̂n1(t; z2) =
I{Ȳn1(t; z2) > 0}

Ȳn1(t; z2)
dN̄n1(t; z2).
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Sequential Ignorability, Part 2

• sequential ignorability (2):

P(dÑ1(t; z1) = 1 | Z = z1, Ñ1(t
−) = 0, Ñ2(t

−; z2, Ñ1(·; z1)) = 0)

= P(dÑ1(t; z1) = 1 | Z = z1, Ñ1(t
−) = 0, Ñ2(t

−) = 0).

• At time t, given the “baseline” Z , the intermediate event status
Ñ1(t

−) = 0, and the fact that the terminal event has not occurred
Ñ2(t

−) = 0, the “treatment” dÑ1(t;Z ) is independent of the
potential process Ñ2(·; z2, Ñ1(·; z1)).

• This sequential ignorability excludes the cross-world reliance of
dÑ1(t; z1) on z2.
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Sequential Ignorability, Part 2

• The hazard of the intermediate event is identifiable

dΛ∗(t; z1, z2)

= P(dÑ1(t; z1) = 1 | Ñ1(t
−; z1) = 0, Ñ2(t

−; z2, Ñ1(·; z1)) = 0)

= P(dÑ1(t; z1) = 1 | Z = z1, Ñ1(t
−) = 0, Ñ2(t

−) = 0)

and can be estimated by Nelson–Aalen estimators,

d Λ̂∗(t; z1) =
I{Ȳ∗(t; z1) > 0}

Ȳ∗(t; z1)
dN∗(t; z1).
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Subdistribution

• We partition the terminal event into a direct event (which does not
have a history of intermediate event) and an indirect event (which has
a history of intermediate event).

• The cumulative incidence of the terminal event consists of two
subdistributions,

F (t; z1, z2) = F0(t; z1, z2) + F1(t; z1, z2),

where

F0(t; z1, z2) = P(Ñ2(t; z2, Ñ1(·; z1)) = 1, Ñ1(t; z1) = 0)

=

∫ t

0

exp{−Λ∗(s
−; z1)− Λ0(s

−; z2)}dΛ0(s; z2),

F1(t; z1, z2) = P(Ñ2(t; z2, Ñ1(·; z1)) = 1, Ñ1(t; z1) = 1)

=

∫ t

0

exp{−Λ∗(s
−; z1)− Λ0(s

−; z2)}[1− exp{−Λ1(t; z2) + Λ1(s; z2)}]dΛ∗(s; z1).
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Interpretation: Controlling the Hazard

• The natural direct effect measures the treatment effect on the
cumulative incidence of terminal event via changing the cause-specific
hazards of terminal events while controlling the hazard of intermediate
events.

• The natural indirect effect measures the treatment effect on the
cumulative incidence of terminal event via changing the hazard of
intermediate events while controlling the cause-specific hazards of
terminal events.

• Nevertheless, since we have no information of the cross-world, whether
the assumption is appropriate is worthy of extensive discussion.
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Limitation of Natural Effects

• Sequential ignorability is untestable in principal.

• The simple notation of potential counting processes stands on
Markovness, which is not required for identification.

• The notation in sequential ignorability (Part 2) is confusing:

P(dÑ1(t; z1) = 1 | Ñ1(t
−; z1) = 0, Ñ2(t

−; z2, Ñ1(·; z1)) = 0).

• The natural effects are hard to interpret.
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Separable Effects

• We adopt the separable effects framework (Stensrud et al, 2021,
2022).

• A: Binary treatment.

• T̃ a: Potential time to primary event.

• R̃a: Potential time to intermediate event.

• C a: Potential censoring time.

• X : Baseline covariates.

• The treatment effect should be defined by contrasting well-defined
distributions of T̃ 1 and T̃ 0, appropriately adjusting R̃1 and R̃0.
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Terminal Events Developed from Different Sources

State 0

State 1

State 2

State 3

Intermediate event

Treatment-induced 
primary event

Intermediate 
event-induced 
primary event

35 / 60



Assumptions

• Assumption 1 (Ignorability):

(T̃ a, R̃a,C a) ⊥⊥ A | X .

• Assumption 2 (Random censoring):

I (t ≤ C a < t + dt) ⊥⊥ (T̃ a, R̃a) | F(t).

• Assumption 3 (Positivity):

c < P(A = a | X ) < 1− c ,

P(T̃ a > t∗,C a > t∗ | A = a,F(t)) > 0.
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Potential Hazards (Transition Rates)

• Potential hazards (transition rates) of direct outcome event (State 1),
intermediate event (State 2) and indirect outcome event through
intermediate event occurring at time r (State 3) at time t:

dΛa
1(t | F(t)) := P(t ≤ T̃ a < t + dt, T̃ a < R̃a | T̃ a ≥ t, R̃a ≥ t,F(t)),

dΛa
2(t | F(t)) := P(t ≤ R̃a < t + dt, R̃a ≤ T̃ a | T̃ a ≥ t, R̃a ≥ t,F(t)),

dΛa
3(t | F(t)) := P(t ≤ T̃ a < t + dt, R̃a ≤ t | T̃ a ≥ t, R̃a ≤ t,F(t)).
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Decomposing Treatment Components

• Suppose the treatment can be decomposed into three components
(A1,A2,A3), where Aj only has an effect on the hazard of State j .

• Then, potential hazards {dΛa
j (·) : j = 1, 2, 3} can be written as

functions of treatment components a = (a1, a2, a3).

• In a realized trial, observed treatment components A1 = A2 = A3,
equal to the actual treatment A.

• In a hypothetical world, treatment components can take different
values.
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Dismissible Components Condition

• Assumption 4 (Dismissible components):

dΛ
(a1,a2,a3)
j (t | F(t)) = dΛ

aj
j (t | F(t)).

• When a1 = a2 = a3, this assumption is naturally satisfied because no
hypothetical worlds are involved.

• Covariates isolation: F(t) only includes prior states history rather
than covariates,

dΛa
1(t | F(t)) = dΛa

1(t | ∅) := dΛa
1(t),

dΛa
2(t | F(t)) = dΛa

2(t | ∅) := dΛa
2(t),

dΛa
3(t | F(t)) = dΛa

3(t | Ra = r) := dΛa
3(t; r).
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Counterfactual Cumulative Incidences

• Denote counterfactual cumulative incidences for three states by
F a
1 (t) = P(T̃ a ≤ t, T̃ a < R̃a), F a

2 (t) = P(R̃a ≤ t, R̃a ≤ T̃ a) and
F a
3 (t) = P(T̃ a ≤ t, R̃a ≤ T̃ a), respectively.

• The counterfactual cumulative incidence of primary event becomes
F a(t) = P(T̃ a ≤ t) = F a

1 (t) + F a
3 (t), with

F
a=(a1,a2,a3)
1 (t) =

∫ t

0

exp{−Λa1
1 (s)− Λa2

2 (s)}dΛa1
1 (s),

F
a=(a1,a2,a3)
2 (t) =

∫ t

0

exp{−Λa1
1 (s)− Λa2

2 (s)}dΛa2
2 (s),

F
a=(a1,a2,a3)
3 (t) =

∫ t

0

exp{−Λa1
1 (s)− Λa2

2 (s)}[1− exp{−Λa3
3 (t; s)}]dΛa2

2 (s).
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Definition of Separable Pathway Effects

• The total treatment effect is decomposed as

F a=(1,1,1)(t)− F a=(0,0,0)(t)

= {F a=(1,0,0)(t)− F a=(0,0,0)(t)}+ {F a=(1,1,1)(t)− F a=(1,0,0)(t)}
:= SPE0→1(t; 0, 0) + SPE0→3(t; 1)

= {F a=(1,0,0)(t)− F a=(0,0,0)(t)}
+ {F a=(1,1,0)(t)− F a=(1,0,0)(t)}
+ {F a=(1,1,1)(t)− F a=(1,1,0)(t)}

:= SPE0→1(t; 0, 0) + SPE0→2(t; 1, 0) + SPE2→3(t; 1, 1).
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Weighted Counting Processes

• Let wi (aj) = I{Ai = aj}/P(Ai = aj | Xi ).
• Define weighted counting processes, at-risk processes and residuals
with respect to dΛa1

1 (t) and dΛa2
2 (t) as follows:

N1(t; a1) =
n∑

i=1

wi (a1)I{Ti ≤ t,Ri > t, δTi = 1},

N2(t; a2) =
n∑

i=1

wi (a2)I{Ri ≤ t,Ti ≥ t, δRi = 1},

Yj(t; aj) =
n∑

i=1

wi (aj)I{Ti ≥ t,Ri ≥ t},

Y ∗
j (t; aj) =

n∑
i=1

wi (aj)
2I{Ti ≥ t,Ri ≥ t},

Mj(t; aj) =

∫ t

0

{
dNj(s; aj)− Yj(s; aj)dΛ

aj
j (s)

}
, j = 1, 2.
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Weighted Counting Processes

• To yield well-defined (nonparametric) estimators for Λa3
3 (t; s),

processes N3(t; r , a3) and Y3(t; r , a3) should be refined so that
Y3(t; r , a3) is nonzero and

M3(t; r , a3) =

∫ t

r
{dN3(s; r , a3)− Y3(s; r , a3)dΛ

a3
3 (s; r)}

is a martingale with respect to some filter.

• For example, we can assume Markovness or semi-Markovness for the
transition from State 2 to State 3.
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Markovness

• Under Markov assumption dΛa3
3 (t; r) = dΛa3

3,ma.(t), let

N3(t; r , a3) = N3,ma.(t; a3) =
n∑

i=1

wi (a3)I{Ti ≤ t, δTi δ
R
i = 1},

Y3(t; r , a3) = Y3,ma.(t; a3) =
n∑

i=1

wi (a3)I{Ti ≥ t,Ri ≤ t, δRi = 1},

Y ∗
3 (t; r , a3) = Y ∗

3,ma.(t; a3) =
n∑

i=1

wi (a3)
2I{Ti ≥ t,Ri ≤ t, δRi = 1},

M3(t; r , a3) = M3,ma.(t; a3) =

∫ t

0

{
dN3,ma.(s; a3)− Y3,ma.(s; a3)dΛ

a3
3,ma.(s)

}
.
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Semi-Markovness

• Under semi-Markov assumption dΛa3
3 (t; r) = dΛa3

3,sm.(t − r), let

N3(t; r , a3) = N3,sm.(u; a3) =
n∑

i=1

wi (a3)I{Ti − Ri ≤ u, δTi δ
R
i = 1},

Y3(t; r , a3) = Y3,sm.(u; a3) =
n∑

i=1

wi (a3)I{Ti − Ri ≥ u, δRi = 1},

Y ∗
3 (t; r , a3) = Y ∗

3,sm.(u; a3) =
n∑

i=1

wi (a3)
2I{Ti − Ri ≥ u, δRi = 1},

M3(t; r , a3) = M3,sm.(u; a3) =

∫ u

0

{
dN3,sm.(s; a3)− Y3,sm.(s; a3)dΛ

a3
3,sm.(s)

}
.
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Estimators for Cumulative Hazards

• The generalized Nelson–Aalen estimators for cumulative hazards are

Λ̂a1
1 (t) =

∫ t

0

dN1(s; a1)

Y1(s; a1)
, Λ̂a2

2 (t) =

∫ t

0

dN2(s; a2)

Y2(s; a2)
,

Λ̂a3
3 (t; r) =

∫ t

r

dN3(s; r , a3)

Y3(s; r , a3)
.

• To use the martingale theory to establish asymptotic properties for the
incidence estimator, we need to assume the propensity score is known.

• Then √
n{F̂ a(t)− F a(t)} d−→ G a

1 (t) + G a
2 (t) + G a

3 (t).
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Realxed Assumptions

• We may relax the assumptions and improve efficiency using
semiparametric estimation.

• Censoring is random conditional on covariates.

• The treatment components are dismissible conditional on covariates:

dΛa
1(t | F(t)) = dΛa

1(t; x),

dΛa
2(t | F(t)) = dΛa

2(t; x),

dΛa
3(t | F(t)) = dΛa

3(t; r , x).

• We assume that there is a subset H(t; r) ⊂ {(T̃ , R̃)} such that
dΛa3

3 (t; r , x) is identical for (t, r) ∈ H(t, r) given X = x .

• Markvoness implies H(t; r) = {(T̃ , R̃) : T̃ ≥ t, R̃ ≤ t}.
• Semi-Markovness implies H(t; r) = {(T̃ , R̃) : T̃ − R̃ ≥ t − r}.
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Efficient Influence Function
• The efficient influence function (EIF) of F (a1,a2,a3)(t) is

φa(t) =

∫ t

0

exp{−Λa1
1 (s;X )}

{
I (A = a1)

P(A = a1 | X )

dM1(s;A,X )

P(T ∧ R ≥ s | A,X )

−
∑

j∈{1,2}

I (A = aj)

P(A = aj | X )

∫ s

0

dMj(u;A,X )

P(T ∧ R ≥ u | A,X )
dΛa1

1 (s;X )

}

+

∫ t

0

∫ s

0

exp{−Λa1
1 (r ;X )− Λa2

2 (r ;X )− Λa3
3 (s; r ,X )}{

I (A = a2)

P(A = a2 | X )

dM2(r ;A,X )

P(T ∧ R ≥ r)
dΛa3

3 (s; r ,X )

−
∑

j∈{1,2}

I (A = aj)

P(A = aj | X )

∫ r

0

dMj(u;A,X )

P(T ∧ R ≥ u | A,X )
dΛa2

2 (r ;X )dΛa3
3 (s; r ,X )

+
I (A = a3)

P(A = a3 | X )

dM3(s;R,A,X )

P(H(s,R) | A,X )
dΛa2

2 (s;X )

− I (A = a3)

P(A = a3 | X )

∫
H(s,R)

dM3(u;R,A,X )

P(H(u,R) | A,X )
dΛa2

2 (r ;X )dΛa3
3 (s; r ,X )

}
+ F (a1,a2,a3)(t;X )− F (a1,a2,a3)(t).
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Estimator Based on EIF

• The EIF-based estimator F̃ a(t) is obtained by solving Pn{φ̂a(t)} = 0.

• Asymptotic normality under some regularity conditions:

√
n{F̃ a(t)− F a(t)} d−→ N

(
0,E [φa(t)]2

)
.

• The EIF-based estimator has multiple robustness:
(1) one of the three hazards is misspecified;
(2) the propensity score and censoring hazard are misspecified.
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Leukemia Data

• Allogeneic stem cell transplantation is a commonly adopted approach
to cure acute lymphoblastic leukemia.

• Human leukocyte antigen matched sibling donor transplantation
(MSDT) has long been considered as the first choice of
transplantation because of lower transplant-related mortality.

• In recent years, some benefits of haploidentical stem cell
transplantation (haplo-SCT) have been found in that haplo-SCT
results in lower relapse rate.

• We are interested in the mechanism of transplantation types on
mortality.

• Sample size n = 303.
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Estimating Separable Effects

• Estimation based on the covariates isolation (Markovian).

• P-values given by the weighted logrank test.

• Haplo-SCT reduces the overall mortality through reducing the risk
(hazard) of relapse.
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Estimating Separable Effects

• Estimation based on the efficient influence function (Markovian).

• P-values given by the test statistic∫ t∗

0 {F̂ a(s)− F̂ a′(s)}d{F̂ a(s) + F̂ a′(s)}.
• Haplo-SCT reduces the overall mortality through reducing the risk
(hazard) of relapse.
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Testing Separable Effects

Test Interpretation P-value

Total The total effect on mortality 0.5341
SPE0→1 The separable pathway effect via NRM 0.2120
SPE0→2 The separable pathway effect via relapse 0.0687
SPE2→3 The separable pathway effect via RRM 0.5495
SPE0→3 The separable pathway effect through the

path relapse–RRM (via relapse and RRM)
0.0676

SPE0→1,2→3 The separable pathway effect on mortality
(via NRM and RRM)

0.4281
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Summary

• We discussed the mediation analysis for time-to-event data, also
known as semi-competing risks.

• A significant challenge for time-to-event data is that the outcome
variables are processes. The potential outcomes are defined on
counting processes.

• The pointwise variance of estimators can be derived by the stochastic
processes theory.

• An interventional approach to mediation analysis, the separable effects
framework, provides an easy-to-interpret solution to semi-competing
risks.
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Extensions

• Interaction effects.
This problem seems to have been overcome by separable effects.

• Time-varying confounders.
Identification can be achieved by g-formula with dismissible
components of confounders.

• Unobserved confounders.
We may assume a frailty (random effect).

• Interventional effects.
A key difference with conventional mediation analysis: the risk of the
intermediate event is undefined after the terminal event.

• Multiple intermediate events (multi-state model).
The separable effects framework can simplify problems.
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