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Motivating Data 1

• Hepatitis B causes serious public health burden worldwide.

• Exposed to hepatitis B, an individual has increasing risks of both liver
cancer and mortality.

• What is the causal effect of hepatitis B on mortality mediated by liver
cancer?
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Motivating Data 1
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Motivating Data 2

• Allogeneic stem cell transplantation is a commonly adopted approach
to cure acute lymphoblastic leukemia.

• Human leukocyte antigen matched sibling donor transplantation
(MSDT) has long been considered as the first choice of
transplantation because of lower transplant-related mortality.

• In recent years, some benefits of haploidentical stem cell
transplantation (haplo-SCT) have been found in that haplo-SCT
results in lower relapse rate.

• Lower relapse rate means lower relapse-related mortality.

• What is the mechanism of transplant modality on overall mortality?
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Motivating Data 2
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Question

• The outcome is “time to event”, subject to censoring.

• There is a terminal event and an intermediate event.

• We want to know
(1) the treatment effect delivered directly to the terminal event and
(2) the treatment effect delivered indirectly through (mediated by) the
intermediate event to the termianl event.

• How to define, identify, estimate and intepret the causal effect?
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Mediation Analysis at Varying Time Points

• For time-to-event data, the mediator and outcome are processes.

• The “mediator” is an intermediate event and the “outcome” is a
terminal event.

• The mediator process N1(t) ∈ {0, 1}: whether the intermediate event
has occurred at t.

• The outcome process N2(t) ∈ {0, 1}: whether the terminal event has
occurred at t.

N1(t−) N2(t) Description at time t

0 0 No intermediate event, no terminal event
0 1 No intermediate event, a terminal event
1 0 An intermediate event, no terminal event
1 1 An intermediate event, a terminal event
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Semi-Competing Risks

• Semi-competing risks refer to the phenomenon that the terminal event
can truncate the non-terminal event but not vice versa (Fine et al,
2001).

• The terminal event and non-terminal events have a competing nature,
but their status is not equal.

• Some individuals develop terminal events after intermediate events,
while others develop terminal events without intermediate events.

• For example, in the study of stem cell transplantation, mortality is a
terminal event, and relapse is an intermediate event.
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Formal Definition: Jumps

• We need to introduce some counting processes to formally define the
semi-competing risks.

• Let dÑ1(t; z1) be the jump of potential counting process for the
intermediate event during [t, t + dt) when the treatment is set at z1.

• Let dÑ2(t; z2, n1) be the jump of potential counting process for the
terminal event during [t, t + dt) when the treatment is set at z2 and
the counting process for the intermediate event at t− is set at n1.
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Formal Definition: Processes

• We integrate the jumps to obtain potential counting processes.

• The potential counting process for the intermediate event

Ñ1(t; z1) =

∫ t

0
dÑ1(s; z1).

• Given the full intermediate event process ñ1(·), the potential counting
process for the terminal event

Ñ2(t; z2, ñ1(·)) =

∫ t

0
dÑ2(s; z2, ñ1(s−)).
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Formal Definition: Well Definedness

• Markovness: the hazard of jumps only relies on the current status,
not the history,

P(dÑ2(t; z2, n1) = 1 | Ñ2(t−; z2, ñ1(·)) = 0, ñ1(t−) = n1, ñ1(s−) = n∗
1)

= P(dÑ2(t; z2, n1) = 1 | Ñ2(t−; z2, ñ1(·)) = 0, ñ1(t−) = n1), s < t.

• Markovness ensures that the notation dÑ2(t; z2, n1) is well defined,
consistent with the purpose of SUTVA — there is only one version of
treatment.

• We can manipulate the treatment z2, or we can manipulate the status
of the intermediate event n1, in order to generate a potential jump
dÑ2(t; z2, n1).
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Consistency and Cross-Worlds

• The potential time to intermediate event T1(z1) is the time that
Ñ1(t; z1) jumps.

• Substituting ñ1(·) with Ñ1(·; z1), the potential time to terminal event
T2(z1, z2) is the time that Ñ2(t; z2, Ñ1(·; z1)) jumps.

• Causal consistency:

Ñ1(t) = Ñ1(t; Z ), Ñ2(t) = Ñ2(t; Z , Ñ1(·; Z )), t ∈ [0, t∗].

• Under causal consistency, T1 = T1(Z ) and T2 = T2(Z ,Z ).
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Consistency and Cross-Worlds

• For time-to-event outcomes, different from the classical mediation
analysis, the intermediate event and terminal event are competing.

• Rigorously, Ñ1(·) (or T1) is a potential outcome of z1 and z2. If we
manipulate the treatment associated with the terminal event z2, then
the time to the intermediate event T1(z1, z2) is not T1(z1) anymore.

• With a terminal event process ñ2(·), the potential counting process for
the intermediate event should be Ñ1(t; z1, ñ2(·)), where ñ2(·) can be
Ñ2(·; z2, Ñ1(·; z1)) in the cross-world (z1, z2).

• However, we do not need to involve such complicated notations. As
we will see later, only the single-world Ñ1(t; z1) (T1(z1)) is required
for identification.
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Estimand

• The counterfactual cumulative incidence of the terminal event

F (t; z1, z2) = P(T2(z1, z2) ≤ t) = P(Ñ2(t; z2, Ñ1(·; z1)) = 1)

is of primary interest.

• To identify F (t; z1, z2), it is equivalent to identify the hazard

dΛ(t; z1, z2) = d log{1− F (t; z1, z2)}.

• Total treatment effect: F (t; 1, 1)− F (t; 0, 0).

• Natural direct effect: F (t; 0, 1)− F (t; 0, 0).

• Natural indirect effect: F (t; 1, 1)− F (t; 0, 1).
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Assumptions for Identification

• Ignorability: the treatment is randomized,

{dÑ1(t; z1), dÑ2(t; z2, n1) : 0 ≤ t ≤ t∗} ⊥⊥ Z .

• The treatment Z is independent of potential values (generated from
potential jumps).

• Random censoring:

{Ñ1(t; z), Ñ2(t; z , Ñ1(·; z)) : 0 ≤ t ≤ t∗} ⊥⊥ C | Z .

• The censoring is independent of counting processes given Z .

• You may as well consider C as a potential outcome since C is a
post-treatment value, in which case ignorability should be imposed for
C (z).
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Assumptions for Identification

• Positivity 1:

P(Ñ1(t; z1) = n1, Ñ2(t; z2, Ñ1(·; z1)) = 0) > 0

⇒P(Z = z , Ñ1(t; z) = n1, Ñ2(t; z , Ñ1(·; z)) = 0) > 0, z ∈ {0, 1},

z1, z2, n1 ∈ {0, 1}, t ∈ [0, t∗].

• As long as the potential status is possible, we should have
corresponding data.

• Positivity 2:
P(C > t∗ | Z ) > 0.

• The censoring time is large enough, so we have data to identify the
functionals prior to t∗.
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Observed Processes

• The censoring indicators for the intermediate event and terminal event
δ1 = I{T1 ≤ C} and δ2 = I{T2 ≤ C}, respectively.

• The observed counting process for the intermediate event
N∗(t; z) = I{T1 ≤ t,T2 ≥ T1, δ1 = 1,Z = z}.

• The observed at-risk process for the intermediate event
Y∗(t; z) = I{T1 ≥ t,T2 ≥ t,C ≥ t,Z = z}.

• Hereafter we use the subscript “∗” to represent the intermediate
event, “1” to represent the terminal event with prior intermediate
event (direct terminal event), and “0” to represent the terminal event
without prior intermediate event (indirect terminal event).
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Observed Processes

• The observed counting process for the direct terminal event
N0(t; z) = I{T2 ≤ t,T1 ≥ T2, δ2 = 1,Z = z}.

• The observed at-risk process for the direct terminal event
Y0(t; z) = I{T2 ≥ t,T1 ≥ t,C ≥ t,Z = z}.

• The observed counting process for the indirect terminal event
N1(t; z) = I{T2 ≤ t,T1 < t, δ2 = 1,Z = z}.

• The observed at-risk process for the indirect terminal event
Y1(t; z) = I{T2 ≥ t,T1 < t,C ≥ t,Z = z}.

• Y∗(t; z) = Y0(t; z) because the intermediate event and the direct
terminal event are a pair of competing events, sharing the same
at-risk set.
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Cause-Specific Hazards

• Define the cause-specific hazard of the terminal event

dΛn1(t; z1, z2)

= P(dÑ2(t; z2, n1) = 1 | Ñ1(t−; z1) = n1, Ñ2(t−; z2, Ñ1(z1)) = 0).

• It involves cross-world values. How to identify the cause-specific
hazard?

• Recall the assumptions we have made: Markovness, consistency,
ignorability, random censoring, and positivity.
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Competing Events in the Cross-World

• Note that Ñ1(·) and Ñ2(·) are competing. In the cross-world (z1, z2),
Ñ2(·) relies on z1 and Ñ1(·) relies on z2.

• We need two sequential ignorability assumptions, one for Ñ2(·) and
the other for Ñ1(·).

Z

N2(t1)

N1(t1
-)

N2(t2)

N1(t2
-)

N2(t3)

N1(t3
-)

dΛn(t;z2) dΛn(t;z2)
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Sequential Ignorability, Part 1

• Sequential ignorability:

P(dÑ2(t; z2, n1) = 1 | Z = z2, Ñ1(t−; z1) = n1, Ñ2(t−; z2, Ñ1(·; z1)) = 0)

= P(dÑ2(t; z2, n1) = 1 | Z = z2, Ñ1(t−) = n1, Ñ2(t−) = 0).

• At time t, given the “baseline” Z , the intermediate event status
Ñ1(t−) = n1, and the fact that the terminal event has not occurred
Ñ2(t−) = 0, the “treatment” dÑ2(t; Z , n1) is independent of the
potential process Ñ1(·; z1).

• Whether Ñ2(t) jumps does not affect when Ñ1(·; z1) jumps in the
future.

• This sequential ignorability excludes the cross-world reliance of
dÑ2(t; z2, n1) on z1.

25 / 59



Sequential Ignorability, Part 1

• The cause-specific hazard (of the terminal event) is identifiable

dΛn1(t; z1, z2)

= P(dÑ2(t; z2, n1) = 1 | Ñ1(t−; z1) = n1, Ñ2(t−; z2, Ñ1(·; z1)) = 0)

= P(dÑ2(t; z2, n1) = 1 | Z = z2, Ñ1(t−) = n1, Ñ2(t−) = 0)

and can be estimated by Nelson-Aalen estimators,

d Λ̂n1(t; z2) =
I{Ȳn1(t; z2) > 0}

Ȳn1(t; z2)
dN̄n1(t; z2).
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Controlling the Prevalence

• What about the sequential ignorability for Ñ1(t)?

• Huang (2021) proposed the following version:

P(Ñ1(t; z1) = 1 | Z = z1, Ñ2(t−; z2, Ñ1(·; z1)) = 0)

= P(Ñ1(t; z1) = 1 | Z = z1, Ñ2(t−) = 0).

• The prevalence of intermediate events

wn1(t; z1, z2) = P(Ñ1(t; z1) = 1 | Ñ2(t−; z2, Ñ1(·; z1)) = 0)

is irrelevant to z2.

• An estimator for the prevalence:

ŵn1(t; z1) =
I{Ȳ0(t; z1) + Ȳ1(t; z1) > 0}

Ȳ0(t; z1) + Ȳ1(t; z1)
Ȳn1(t; z1).
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Controlling the Prevalence

• Under all the assumptions above,

d

dt
Λ(t; z1, z2) =

∑
n1∈{0,1}

d

dt
Λn1(t; z2) · wn1(t; z1).

• The natural direct effect measures the treatment effect on the
cumulative incidence of terminal event via changing the cause-specific
hazards of terminal events while controlling the prevalence of
intermediate events.

• The natural indirect effect measures the treatment effect on the
cumulative incidence of terminal event via changing the prevalence of
intermediate events while controlling the cause-specific hazards of
terminal events.
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A Paradox

• In some scenarios, interpreting the natural direct effect as “controlling
the prevalence of intermediate events” may not be meaningful.

• For example, if a novel therapy completely removes the terminal
event, we may think that the direct effect should be large but the
indirect effect is null.

• However, since the prevalence of intermediate events increases to 1 by
removing terminal events, the indirect effect can also be large.

29 / 59



Sequential Ignorability, Part 2

• We replace the “controlling the prevalence” assumption with the
following sequential ignorability:

P(dÑ1(t; z1) = 1 | Z = z1, Ñ1(t−) = 0, Ñ2(t−; z2, Ñ1(·; z1)) = 0)

= P(dÑ1(t; z1) = 1 | Z = z1, Ñ1(t−) = 0, Ñ2(t−) = 0).

• At time t, given the “baseline” Z , the intermediate event status
Ñ1(t−) = 0, and the fact that the terminal event has not occurred
Ñ2(t−) = 0, the “treatment” dÑ1(t; Z ) is independent of the
potential process Ñ2(·; z2, Ñ1(·; z1)).

• Whether Ñ1(t) jumps does not affect when Ñ2(·; z2, Ñ1(·; z1)) jumps
in the future.

• This sequential ignorability excludes the cross-world reliance of
dÑ1(t; z1) on z2.
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Sequential Ignorability, Part 2

• The hazard of the intermediate event is identifiable

dΛ∗(t; z1, z2)

= P(dÑ1(t; z1) = 1 | Ñ1(t−; z1) = 0, Ñ2(t−; z2, Ñ1(·; z1)) = 0)

= P(dÑ1(t; z1) = 1 | Z = z1, Ñ1(t−) = 0, Ñ2(t−) = 0)

and can be estimated by Nelson-Aalen estimators,

d Λ̂∗(t; z1) =
I{Ȳ∗(t; z1) > 0}

Ȳ∗(t; z1)
dN∗(t; z1).
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Subdistribution

• We partition the terminal event into a direct event (which does not
have a history of intermediate event) and an indirect event (which has
a history of intermediate event).

• The cumulative incidence of the terminal event consists of two
subdistributions,

F (t; z1, z2) = F0(t; z1, z2) + F1(t; z1, z2),

where

F0(t; z1, z2) = P(Ñ2(t; z2, Ñ1(·; z1)) = 1, Ñ1(t; z1) = 0)

=

∫ t

0

exp{−Λ∗(s−; z1)− Λ0(s−; z2)}dΛ0(s; z2),

F1(t; z1, z2) = P(Ñ2(t; z2, Ñ1(·; z1)) = 1, Ñ1(t; z1) = 1)

=

∫ t

0

exp{−Λ∗(s−; z1)− Λ0(s−; z2)}[1− exp{−Λ1(t; z2) + Λ1(s; z2)}]dΛ∗(s; z1).
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Controlling the Hazard

• The natural direct effect measures the treatment effect on the
cumulative incidence of terminal event via changing the cause-specific
hazards of terminal events while controlling the hazard of intermediate
events.

• The natural indirect effect measures the treatment effect on the
cumulative incidence of terminal event via changing the hazard of
intermediate events while controlling the cause-specific hazards of
terminal events.

• Nevertheless, since we have no information of the cross-world, whether
the assumption is appropriate is worthy of extensive discussion.
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Hepatitis B Data

• Hepatitis B causes serious public health burden worldwide.

• We are interested in the mechanism of hepatitis B on overall mortality
in order to prevent the negative consequences of hepatitis B.

• Treatment: hepatitis B (1 for positive and 0 for negative).

• Intermediate event: cancer.

• Terminal event: mortality.

• Sample size 4954.
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Hepatitis B Data

• Hepatitis B increases mortality.
• F (t; 0, 1): the incidence of mortality under the prevalence/hazard of

cancer without hepatitis B, hazard of mortality with hepatitis B.
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Hepatitis B Data

• Hepatitis B increases mortality through increasing the risk of cancer.

• The direct effect of hepatitis B on mortality is not significant.
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Hepatitis B Data: Alternative Decomposition

• If we reverse the treatment and control (1 for negative and 0 for
positive)... which can serve as a sensitivity analysis on the interaction
effect.
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Hepatitis B Data: Alternative Decomposition

• Hepatitis B increases mortality through increasing the risk of cancer.

• The substantial conclusion still holds.
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Leukemia Data

• Allogeneic stem cell transplantation is a commonly adopted approach
to cure acute lymphoblastic leukemia.

• Human leukocyte antigen matched sibling donor transplantation
(MSDT) has long been considered as the first choice of
transplantation because of lower transplant-related mortality.

• In recent years, some benefits of haploidentical stem cell
transplantation (haplo-SCT) have been found in that haplo-SCT
results in lower relapse rate.

• We are interested in the mechanism of transplantation types on
mortality.

• Treatment: transplantation type (1 for haplo-SCT and 0 for MSDT).

• Intermediate event: relapse.

• Terminal event: mortality.

• Sample size 303.
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Leukemia Data

• Haplo-SCT reduces mortality.
• F (t; 0, 1): the incidence of mortality under the prevalence/hazard of

relapse undergoing MSDT, hazard of mortality undergoing haplo-SCT.
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Leukemia Data

• Haplo-SCT reduces mortality through reducing the risk of relapse.

• Two different assumptions give slightly different conclusions!
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Leukemia Data: Alternative Decomposition

• If we reverse the treatment and control (1 for MSDT and 0 for
haplo-SCT)... which can serve as a sensitivity analysis on the
interaction effect.
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Leukemia Data: Alternative Decomposition

• Haplo-SCT reduces mortality through reducing the risk of relapse.

• The substantial conclusion still holds.
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Why Different Results

• When envisioning F (t; 0, 1), Decomposition 1 tries to leave the hazard
of death as natural while holding the prevalence of relapse unchanged
among alive patients.

• Unfortunately, this task is impossible.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

Cumulative incidence

Time (years)

F
(t)

F(t;1,1)
F(t;0,1)
F(t;0,0)

prevalence

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

Cumulative incidence

Time (years)

F
(t)

F(t;1,1)
F(t;0,1)
F(t;0,0)

hazard

45 / 59



Why Different Results

• When switching the treatment from 0 (MSDT) to 1 (haplo-SCT),
more individuals would experience transplant-related mortality, so the
prevalence of relapse tends to get higher.

• Therefore, Decomposition 1 controlled the prevalence of relapse at a
level lower than natural.
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Why Different Results

• Since relapse is strongly associated with relapse-related mortality,
underestimation of the prevalence of relapse is reflected by an
underestimation of relapse-related mortality.

• Thus, the total incidence of mortality F (t; 0, 1) is underestimated.
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Why Interventionist Approach

• Recall the separable effects framework for mediation analysis.

• There are three advantages for the separable effects framework over
the standard mediation analysis using sequential ignorbaility.

• First, the notation is simpler, and the interpretation is easier, although
the implications may remain the same.

• Second, the dismissible treatment components assumption, compared
with sequential ignorability, is testable in principle.

• Third, when the sequential ignorability is violated, the separable
effects estimand is still meaningful from the interventionist view as
long as we can envision dismissible treatment components.
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Separable Effects for Time-to-Event Outcomes

• We decompose the treatment into A = (A1,A2,A3).

• A1 influences the hazard of the direct terminal event.

• A2 influences the hazard of the intermediate event.

• A3 influences the hazard of the indirect terminal after the intermediate
event.

• In the realized trial, A = A1 = A2 = A3. But in future experiments,
A1, A2 and A3 can be unequal.
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Separable Effects for Time-to-Event Outcomes

• N1: counting process of the direct outcome event.

• N2: counting process of the intermediate event.

• N3: counting process of the indirect outcome event.

A2 N 2(t1)

N 3(t1)

N 1(t1)

N 2(t2)

N 3(t2)

N 1(t2)

N 2(t3)

N 3(t3)

N1(t3)A1

A3

A
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A Multi-State Model

• State 0: original status

• State 1: direct outcome (terminal) event

• State 2: intermediate event

• State 3: indirect outcome (terminal) event following intermediate
event

State 0

State 1

State 2

State 3

1
1 ( )ad tΛ

2
2 ( )ad tΛ 3

3 ( ; )ad t rΛ

Z

Z2

Z1

Z3
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New Estimand and Assumption

• Potential time to the terminal event T a=(a1,a2,a3).

• Potential time to the intermediate event Ra=(a1,a2,a3).

• The quantity of interest is the counterfactual cumulative incidence of
the terminal event

F a=(a1,a2,a3)(t) = P(T a=(a1,a2,a3) ≤ t).

• Denote the transition hazard to State j by dΛ
a=(a1,a2,a3)
j (t).

• Dismissible treatment components (under Markovness):

dΛ
a=(a1,a2,a3)
j (t) = dΛ

aj
j (t).

• The transitions are “stable”. It means there is no confounding
between events, similar with sequential ignorability, but notationally so
concise!
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Separable Pathway Effects

• The total effect

TE (t) = F a=(1,1,1)(t)− F a=(0,0,0)(t)

can be decomposed into three separable pathway effects,

TE (t) = F a=(1,0,0)(t)− F a=(0,0,0)(t)

+ F a=(1,1,0)(t)− F a=(1,0,0)(t)

+ F a=(1,1,1)(t)− F a=(1,1,0)(t)

= SPE0→1(t) + SPE0→2(t) + SPE2→3(t).

• SPE0→1(t) serves as the direct effect, SPE0→2(t) serves as the
indirect effect, and SPE2→3(t) serves as the interaction effect.
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Summary

• We discussed the mediation analysis for time-to-event data, also
known as semi-competing risks.

• A significant challenge for time-to-event data is that the outcome
variables are processes. The potential outcomes are defined on
counting processes.

• The separable effects framework provides an easy-to-interpret
approach to mediation analysis.

• The pointwise variance of estimators can be derived by the stochastic
process theory, or simply by bootstrap.
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Extensions

• Interaction effects.
This problem seems to have been overcome by separable effects.

• Alternatives to mediation analysis, for example, by principal
stratification.
Principal stratification provides a tool to study the pure effect in a
principal stratum.
Untestable assumptions like principal ignorability cannot be avoided.
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Extensions

• Baseline confounders.
We need to condition on confounders in assumptions.
Then we can derive the efficient influence functions, and propose
efficient estimators (Martinussen and Stensrud, 2023).

• Time-varying confounders.
Identification can be achieved by g-formula.
Efficient estimation could be difficult.

• Multiple intermediate events.
Using the separable effects framework, the idea is straightforward.
However, if the model is too complicated, estimation is accompanied
by large variation.
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