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Coheritability in family data

A fundamental question in precision medicine related to comorbidity is to what degree
multiple phenotypes share the same genetic etiology.

Using family history reports of disease in relatives from probands, existing studies (e.g.,
UK biobank, All of Us, Washington Heights-Inwood Community Aging Project) have
shown substantial co-variation between traits.

The phenotypic co-variation can be contributed by genetic co-inheritance and shared
environmental factors.

It is of interest to study the genetic coheritability and environmental correlation for a large
number of phenotypes.
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Existing literature to study single-trait heritability

Shared frailty models with a random effect in each family (Chen et al. 2009,
Graber-Naidich et al. 2011, Forfine et al. 2013).

Copula models accounting for the correlation between family members (Hsu et al. 2018).

Structural equation modeling accounting for multiple types of familial correlation (Munoz
et al. 2016, Wang et al. 2020).

A transformation model for time-to-event outcomes when the kinship is not completely
known (Liang et al. 2019).
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Phenotypic co-variation

® Estimating coheritability requires integrating multiple phenotypes.

The co-variation of two phenotypes in two subjects are attributed to two sources:

(1) These two phenotypes share the same underlying genetic factors.

(2) These two subjects share the same environmental factors.
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Phenotypic co-variation

® Estimating coheritability requires integrating multiple phenotypes.

The co-variation of two phenotypes in two subjects are attributed to two sources:

(1) These two phenotypes share the same underlying genetic factors.

(2) These two subjects share the same environmental factors.

Linear mixed models to estimate the polygenic effects for a pair of phenotypes (Lee et al.
2012).

A Haseman-Elston estimator based on the regression residuals for a pair of phenotypes
considering kinship correlation (Elgart et al. 2022).
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Phenotypic co-variation
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Challenges to study coheritability

e Current statistical methods are designed to estimate heritability in a single data type
(continuous). Phenotypes in different data types cannot be easily incorporated in a single
model.

® The number of phenotypes and the sample size are both very large, resulting in
high-dimensional covariance matrix.

® |t is essential to account for the multi-level structure of dependence between phenotypes
within a subject and the genetic/environmental correlation between subjects within a
family.
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Data structure

® In the biobank data, suppose there are n families and n; members in the ith family.

® We measure K phenotypes which may be recorded in different data types (continuous,
binary, ordinal, time-to-event).
® Let Yjj be the measurement for the kth phenotype on subject j in the ith family.

® Let Xj; be the covariates,
e; be the envriomental risk factor, and
€jjk be the genetic risk factor for the kth phenotype of subject j in the ith family.
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Model

® To address these challenges, we propose semiparametric joint modeling with latent
random effects.
® For continuous, binary or ordinal outcomes, assume an exponential distribution family,

F(Yii | Xij, e, €i) = exp{epic(mi) " T (Vi) — Aliiw) + (Vi) }

where ;i is a function of Xj;, e; and €;j with unknown parameter 7.
® For time-to-event outcomes with right censoring, assume a proportional hazards model,

Aijk(t ’ )(,'J'7 €, 6/'jk) = /\k(t) eXp(Oé;(l—)(,j|f + Orei + 6Uk),

where Ay(t) is the unknown baseline hazard function. We observe

Yiik = (Tijk N CGiji, I{ Tije < Ciji}) with Cyjie being the censoring time.
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Model: examples

Continous Y,
T
Y,:,'k = oy Xjj + Orei + €ijk + Ujjk-

Ordinal (including binary) Yjj, assuming a latent variable Z with
Zijk = aZX,-j + Oxei + €jik + Uik,

where Uik ~ N(O, 1), and Y,'J'k =/if (5;(7/_1 < Z,'jk < 5k,l-
® Time-to-event Ty,
H(TU ) = aZX,j‘ + Ore; + €ijk T Uijk,

There is a linear term dominating the distribution:

T
oy X,'jk + Orei + €ijk + Ujjk-
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Structure of covariance

® let I' be a K x K matrix representing the coheritability of K phenotypes.

Let G; be the known n; x n; kinship matrix of the ith family. For example,

1 05
G’_<0.5 1 )

in the family with a parent and a child.

® The environmental risk factor e; ~ N(0,1) independent across families.

Let € = (€i1k,-- -, €ink)  be the n; x 1 vector of genetic risk factors in the ith family,
€ =(€e,...,e;) ~NOT®G)).

® For two phenotypes (k, k') and two members (j,;') in the same family,

cov(€jjk; Eijr k) = Yik' 8jj'-
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Parameters of interest: heritability and coheritability

® Assuming additive genetic, environmental and error term, the total variation

aﬁ = Hﬁ + Vi + var(ujj)-

Heritability: h? = vk /o%.

Environmental effect: {7 = 67 /o7%.

® For a pair of phenotypes:

Coheritability: hkk’ = ’ykk//O'kO'k/.

® Environmental correlation: i = 040y /o ko).
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Estimation: maximizing the joint likelihood

® |deally, we can apply the maximum likelihood estimation to estimate parameters.
® The full likelihood function of all observed data O

n ni K
L(O) = H/ / f(e,-)f(e,-;I‘) H H f(Y,'jk | X,'J', e,-,e,-jk; nk)de,-de,-.
=1 € V€

j=1k=1

® Note that the gentic risk factor €; is an n;K-dimensional vector.

® |t is almost impossible to evaluate the likelihood by numerical integration.
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Estimation: maximizing the joint likelihood

® |deally, we can apply the maximum likelihood estimation to estimate parameters.
® The full likelihood function of all observed data O

n ni K
L(O) = H/ / f(e,-)f(e,-; I‘) H H f(Y,'J'k | X,'J', €, €ijks nk)de,-de,-.
j=1"€ J€ j=1k=1
® Note that the gentic risk factor €; is an n;K-dimensional vector.
® |t is almost impossible to evaluate the likelihood by numerical integration.
® To address this issue, we propose a two-stage procedure to estimate parameters.

e \We first estimate 71, and diagonal elements of I' by maximizing the marginal likelihood for
phenotype k. Then we estimate off-diagonal elements of I by solving estimating
equations for each pair of phenotypes.
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Maximizing the marginal likelihood
® In the first stage, we maximize the marginal likelihood for phenotype k.
® The marginal likelihood for the kth phenotype
n;

Li(Okimi) = H/ / f(ei)f(fik;’Ykk)H f(Yiik | Xij, ei, €jji; i) dejde;.
i—17ei Jeix

J=1

® The number of integration is reduced to n; + 1 from n;K + 1.
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Maximizing the marginal likelihood

® In the first stage, we maximize the marginal likelihood for phenotype k.
® The marginal likelihood for the kth phenotype

nj

Li(Okimi) = H/ / f(ei)f(eik;’Ykk)H f(Yiik | Xij, ei, €jji; i) dejde;.
i—17ei Jeix

J=1

® The number of integration is reduced to n; + 1 from n;K + 1.

® We apply the EM algorithm to estimate 7, and i under the exponential distribution
family.

® The complete-data likelihood

n

Li.com(Okimk) = H f(ei)f(€ik; Yrk) H f(Yiik | Xij, ei, €jjic; Mk)-
i—1 =1
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Maximizing the marginal likelihood

® In the E step, we evaluate the conditional expectation of any function Q(O3,) given
observed data and current estimates,

Jo J. F(eFlers TG (Vi | Xy e, i 1y ™) Q(O ) dende;

E(QO3) | Ouin™) = “om =
Je Je, F(er)f (e AV (Vi | Xijs e e 1™ ) deide;

® In the M step, we maximize the complete-data log-likelihood. Specifically,

m+1 ]-n" m
(O = 5 B | O™,

me _ 1§

kk n /E\(elGi_leik ’ O;k;nim)).
D i1 Mi -1
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Likelihood for a pair of phenotypes

® |n the second stage, we estimate the off-diagonal elements of T'.
® The observed-data likelihood for the (k, k") pair of phenotypes

Lik (Ok, Ok) H// f(e)f (€iks €iwr Vicks Vs Yok )
€jk,€E ,k/

H f(Yii | Xijs e, €ijic; ) F(Yijee | Xijs €is €ijwrs i ) d (€, €k ) e
j=1

® There is only one known parameter 7y, in the likelihood if plugging in the first-stage
estimates.

® The number of integration is 2n; + 1, which can be further reduced.
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Pairwise estimating equations

¢ We collapse eligible member pairs. Notice that

E{|0g// f(ei)f(€iji, €ijr it Yicks Yk k! > Vick?)
87/(/(, e (eUk7€fj/k/)

F(Yiik | Xij, ei €ijic i, O )F (Vi | Xigr, €, €gjeier; ouer, O ) d (€, Eij'k')dei} =0.

® So we can estimate ~yy solve the estimating equation >_7 ; U; i (Vkk/; Tiks k') = 0,
where

~ o~ 8 A i
Usstae Cte' s i) = o Z IOg/ / f (&) F(€ijk» €ijr ks ks Th' k! » Vkk! )
T ineg e o)

f( Yljk ’ )(,'J'7 €, €ijks ’I/’]\k)f( Ylj’k’ ’ X,'j, €, €ij/ k! ﬁk/)d(e,-jk, e,-j/k/)de,-.
® \We only need to perform 3 times of integration in each family.
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Variance estimation

® For k in the exponential distribution family, estimating the variance by plugging in
influence function is straightforward.

® For time-to-event k, we use the profile likelihood to estimate the variance.

® The profile log-likelihood for phenotype k
n
pl(Ok; Bk) = max g«gik(()ik;ﬂk,/\k)-
® The score function of the parametric part can be evaluated by
pli(Oi; Br + hner) — pli(Ou; Br)

1
hi, : ’

§k((9ik;,§k) = :
pli(Oi; Bk + hnep,) — pli(Oix; Br)
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Scale up to large data

In biobank scale data, both the family size n; and the number of families n are very large.

To deal with the large family size n;, we can select nuclear families from the whole sample
(Gao et al. 2023).
To deal with the large number of families n, we apply the “divide-and-conquer” strategy.

® \We estimate the parameters in each block, and then aggregate them by inverse variance
weighting (IVW).
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UK biobank data

Browse Search Catalogues | Downloads

Browse by Primary Category
Category Iltems

+ (1 Population characteristics 38
=3 Assessment centre 0
#( Recruitment 21
#( Touchscreen 396
+( Cognitive function 121
# (3 Verbal interview 36
+ (21 Physical measures 270
#( Eye measures 333
%1 Imaging 2832
+ (1 Biological sampling 10
#2 Procedural metrics 76
=3 Biological samples 0
+ (1 Blood assays 964
=1 Sample inventory 13
Saliva assays 0
% Urine assays 16
#( Genomics 274
#( Online follow-up 1685
+ (1 Additional exposures 366
42 Health-related outcomes 2650
Summary generated 17 May 2024
See under Catalogues for other category groupings.

Enabling scientific discoveries that improve human health
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Data processing

Recover kinship correlation

Extract phenotypes

Select phenotypes

Estimate heritability

Estimate coheritability

12534 individuals with detected
family information

B 5091 families with 2 members
B 632 families with 3 members
B 114 families with 4 members

UKB data fields (assessment center,
biological samples, online follow-up,
health related outcomes)

ICD-10 converted to PHEcodes

Remove highly correlated phenotypes
Remove phenotypes with high missingness
290 phenotypes

152 continuous (Complete rate > 5%)

B 97 binary (Complete rate > 5%,
Prevalence > 5%)

27 ordinal (Complete rate > 5%)

14 time-to-event (Event rate > 1%)

',,H;M“

i
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Continuous phenotypes: single-trait heritability

® QOur estimates are consistent with existing findings.

Table: Estimated heritability (%) for continuous phenotypes

Phenotype

Height

BMI

Diastolic blood pressure
Systolic blood pressure
Red blood cells count
White blood cells count

Estimate (Cl)
81.4 (74.3-89.0)
55.6 (49.3-61.8)
32.7 (27.1-38.8)
33.7 (28.0-40.0)
44.8 (39.1-50.8)
35.0 (29.0-41.6)

Estimates in literature
20-80
3190
17-40
17-62
30-70
14-49
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Single trait: heritability for different data types

Phenotype Type Estimate (95% CI)
3mm weak meridian (left) (Continuous) ! — " 0.835(0.696, 0.918)
Standing height (Continuous) ‘ - 0.811 (0.781, 0.838)
Lipoprotein A (Continuous) - 0.804 (0.753, 0.847)
3mm weak meridian (right) (Continuous) ; - 0.721 (0.571, 0.834)
Spherical power (right) (Continuous) " 0.665(0.267,0.916)
Chest pain or discomfort walking normally (Binary) ' " 0.77(0.435,0.935)
Diabetes diagnosed by doctor (Binary) 0.569 (0.157, 0.903)
Ever smoked (Binary) ‘ - 0.474 (0.386, 0.564)
Disorders of thyroid gland (Binary) - 0.418 (0.165, 0.723)
Ever unenthusiastic/disinterested for a whole week  (Binary) ‘ I 0.417 (0.234, 0.625)
Hair colour (natural, before greying) (Ordinal) ‘ ™ 0.92 (0.895, 0.94)
Skin colour (Ordinal) ' *  0.85(0.833, 0.866)
Been in a confiding relationship as an adult (Ordinal) ‘ - 0.551 (0.54, 0.562)
Felt hated by family member as a child (Ordinal) ‘ 0.509 (0.169, 0.84)
Felt distant from other people in past month (Ordinal) ; - 0.455 (0.447, 0.462)
Date of asthma report (Time to event) [ 0.501 (0.355, 0.648)
Age asthma diagnosed (Time to event) w - 0.454 (0.165, 0.778)
Age hay fever, rhinitis or eczema diagnosed (Time to event) : - 0.372 (0.18, 0.616)
Date of chronic obstructive pulmonary disease report (Timetoevent) : — -~ 0.254 (0.067, 0.616)
Date of stroke (Time to event) - 0.236 (0.086, 0.504)

[ I I I I
0 0.2 0.4 0.6 0.8
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Single trait: heritability and

count
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Single trait: heritability compared with HEc

Phenotype
Body mass index (BMI)
Standing height

Diastolic blood pressure, automated reading
Systolic blood pressure, automated reading
Forced expiratory volume in 1-second (FEV1)

Cholesterol

HDL cholesterol

LDL direct

Glycated haemoglobin (HbA1c)
Triglycerides

Basophill count

Eosinophill count

Haemoglobin concentration
Lymphocyte count

Monocyte count

Neutrophill count

Platelet count

Platelet crit

Red blood cell (erythrocyte) count
White blood cell (leukocyte) count
Reticulocyte count

Est (95% Cl) MPCH
0.575 (0.513, 0.635)
0.811 (0.781, 0.838)
0.341 (0.286, 0.401)
0.353 (0.296, 0.413)
0.37 (0.262, 0.493)

0.321 (0.265, 0.382)
0.509 (0.417, 0.602)
0.291 (0.235, 0.354)
0.465 (0.405, 0.526)
0.339 (0.243, 0.451)
0.055 (0.041, 0.074)
0.392 (0.338, 0.449)
0.35 (0.289, 0.416)

0.34 (0.236, 0.461)

0.404 (0.339, 0.472)
0.346 (0.289, 0.407)
0.503 (0.416, 0.589)
0.459 (0.389, 0.531)
0.464 (0.408, 0.522)
0.366 (0.307, 0.429)
0.437 (0.375, 0.502)

Est (95% Cl) HEc
0.619 (0.562, 0.671)
1.03 (0.976, 1.085)
0.351 (0.302, 0.41)
0.378 (0.313, 0.431)
0.471 (0.408, 0.543)
0.331 (0.279, 0.381)
0.552 (0.496, 0.609)
0.307 (0.256, 0.359)
0.5 (0.443, 0.557)
0.421 (0.368, 0.484)
0.289 (0.229, 0.364)
0.426 (0.374, 0.473)
0.363 (0.31, 0.41)
0.4 (0.382, 0.497)
0.448 (0.393, 0.5)
0.39 (0.332, 0.437)
0.554 (0.5, 0.615)
0.496 (0.445, 0.559)
0.467 (0.411, 0.522)
0.408 (0.353, 0.461)
0.483 (0.425, 0.538)

Method
HMPCH

#HEC
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Coheritability and environmental correlation

(A) Coheritability (290x290)

(B) Environmental correlation (290x290)
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Coheritability compared with HEc
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Coheritability for all phenotypes

(C) Squared coheritability by MPCH

Color Key

Organ diseases (e.g.,
liver, kidney, stomach,
esophagus, vein)

} Mental health

> Heel bone density
} Diabetes related (e.g., HDL
cholesterol)

Body composition

34/38



Summary of UK biobank data analysis

We find that some phenotypes share very high genetic coheritability (which can be seen
from clusters).

® The environmental effect/correlation is generally small compared to the genetic
(co)heritability.

This may be because that the family relation in the UK biobank data is “derived"”.

Some binary and time-to-event phenotypes have very low incidences, rendering the high
variance of the estimated coheritability.
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Fraction of genetic effect in phenotypic correlation

(A\) Fraction of genetic effect (K=290 phenotypes) (B) Fraction of genetic effect (290x290)
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Summary of the methods

® Through modeling with random effects, phenotypes in different data types are unified to
the same scale.

® \We propose a computational effecient method to estimate the coheritability of phenotypes
using biobank data.

® The first stage estimates the single-trait parameters by likelihood methods, which
maintains as much efficiency as possible.

® The second stage estimation only involves a single parameter, so it is computational
efficient.

® The asymptotic properties are established based on influence functions.

e Utilizing modern parallel computation devices, the framework is useful to handle a huge
number of phenotypes.
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