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Motivating Data

• Allogeneic stem cell transplantation is a well applied therapy to treat
acute lymphoblastic leukemia, including two sorts of transplant
modalities: human leukocyte antigens matched sibling donor
transplantation (MSDT) and haploidentical stem cell transplantation
from family (Haplo-SCT).

• MSDT has long been regarded as the first choice of transplantation
because MSDT leads to lower transplantation related mortality, also
known as non-relapse mortality (NRM).

• In recent years, some benefits of Haplo-SCT have been noticed that
patients with positive pre-transplantation minimum residual disease
(MRD) undergoing Haplo-SCT have better prognosis in relapse.

• However, the mechanism of how transplant modalities can affect
overall survival needs further exploration.
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Semi-Competing Risks

• In many clinical trials focusing on time-to-event outcomes, the
primary (terminal) event may be affected by occurrences of
intermediate (non-terminal) events.

• The terminal event can truncate the non-terminal event, but not vice
versa (Fine et al., 2001).

• Some individuals have observations on both intermediate and primary
events, while others only have observations on primary events.

• For example, to study the effectiveness of stem cell transplantation,
mortality is a primary event and relapse of leukemia is an intermediate
event.
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Cumulative Incidences

• Let T be the time to the primary event, and R be the time to the
intermediate event if any.

• The cumulative incidence of the primary event F (t) := P(T ≤ t) is
usually adopted as the estimand in survival analysis.

• The hazard of developing primary events at time t > 0, denoted by
λ(t) := −d log{P(T ≥ t)}/dt, may be different between those with
intermediate events and those without intermediate events.

• Therefore, the hypothetical cumulative incidence of the primary event
by appropriately adjusting the intermediate event is of more interest.
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Methods for Semi-Competing Risks Data

• Identification of the dependence between T and R is a fundamental
problem.

• Joint survivor function:

P(T ≥ t,R ≥ r),

defined on a wedge {(t, r) : t ≥ r ≥ 0}
• Using copulas to model the joint survivor function (Clayton, 1978).

• Modelling the data generating process under illness-death models (Xu
et al. 2010).
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Multi-State (Illness-Death) Models

Treatment Terminal Event

Non-terminal 
Event

Figure: Multi-state (illness-death) models.
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Causal Inference to Semi-Competing Risks

• To study the treatment effect of an intervention A on the primary
event, we shall adopt the potential outcomes framework.

• A: Binary treatment.

• T a: Potential time to primary event.

• Ra: Potential time to intermediate event.

• C a: Potential cenosring time.

• X : Baseline covariates.

• Under the stable unit treatment value assumption (SUTVA), the
potential outcomes are well defined.

• The treatment effect should be defined by contrasting well-defined
distributions of T 1 and T 0, appropriately adjusting R1 and R0.
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Causal Inference to Semi-Competing Risks

• Fundemantal problem of causal inference: only one of the two sets of
potential outcomes is observable.

• Fundamental problem of time-to-event data analysis: large failure
times are censored.

• Potential event times and event indicators:

T̃ a = min{T a,C a}, δaT = I{T a ≤ C a},
R̃a = min{Ra,C a}, δaR = I{Ra ≤ C a}.

• Consistency:

T̃ = T̃A, δT = δAT , R̃ = R̃A, δR = δAR .
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Causal Inference to Semi-Competing Risks

• Principal stratification: to restrict the target population on a principal
stratum

{R1 =∞,R0 =∞},

where no intermediate events would happen regardless of treatments
(Xu et al., 2022; Nevo and Gorfine, 2022; Gao et al., 2022).

• Mediation analysis: to define mediated potential outcomes on event
(counting) processes, so the natural direct effect

P(T 1,0 ≤ t)/P(T 0,0 ≤ t)

is controlling the prevalence of intermediate events (Huang, 2021).
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Separable Effects

• An interventionist approach to mediation analysis attempts to
decompose the initial treatment into two segments, each of which
only has a direct effect on a single event (Robins and Richardson,
2010; Stensrud et al., 2022).

• Challenge: Since intermediate events may further develop terminal
events, the treatment effect on terminal events relies on both the
hazard of intermediate events and the heterogeneous cause-specific
hazards of terminal events.

• As a result, the total treatment effect can be decomposed into more
than two separable effects.
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Primary Events Developed from Different Sources

State 0

State 1

State 2

State 3

Intermediate event

Treatment-induced 
primary event

Intermediate 
event-induced 
primary event

Figure: A multi-state model. Primary events include direct outcome events
(treatment-induced) and indirect outcome events (intermediate event-induced).
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Assumptions

• We need the following three assumptions. These assumptions are
common in causal inference and survival analysis.

• Assumption 1 (Ignorability): (T a,Ra,C a) ⊥⊥ A | X .

• Assumption 2 (Random censoring):
I (t ≤ C a < t + dt) ⊥⊥ (T a,Ra) | F(t).

• Assumption 3 (Positivity): c < P(A = a | X ) < 1− c for a constant
c > 0, P(T a > τ,C a > τ | A = a,F(t)) > 0 for any 0 ≤ t ≤ τ and
a = 0, 1.
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Potential Hazards (Transition Rates)

• Potential hazards (transition rates) of direct outcome event (State 1),
intermediate event (State 2) and indirect outcome event through
intermediate event occurring at time r (State 3) at time t:

dΛa
1(t | F(t)) := P(t ≤ T a < t + dt,T a < Ra | T a ≥ t,Ra ≥ t,F(t)),

dΛa
2(t | F(t)) := P(t ≤ Ra < t + dt,Ra ≤ T a | T a ≥ t,Ra ≥ t,F(t)),

dΛa
3(t | F(t)) := P(t ≤ T a < t + dt,Ra ≤ t | T a ≥ t,Ra ≤ t,F(t)).
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Decomposing Treatment

• Suppose the treatment can be decomposed into three segments
(A1,A2,A3), where Aj only has an effect on the hazard of developing
into State j .

• Then, potential hazards {dΛa
j (·) : j = 1, 2, 3} can be written as

functions of separable treatments a = (a1, a2, a3).

• In a realized trial, observed separable treatments a1 = a2 = a3, equal
to the actual treatment.

• In a hypothetical world, separable treatments can take different values.
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Hazards in Multi-State Models

State 0

State 1

State 2

State 3

1
1 ( )ad tΛ

2
2 ( )ad tΛ 3

3 ( ; )ad t rΛ

A

A2

A1

A3

Figure: A multi-state model. Primary events include direct outcome events
(treatment-induced) and indirect outcome events (intermediate event-induced).
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Dismissible Treatment Components

• Assumption 4 (Dismissible treatment components):

dΛ
(a1,a2,a3)
j (t | F(t)) = dΛ

aj
j (t | F(t)).

• When a1 = a2 = a3, this assumption is naturally satisfied because no
hypothetical worlds are involved.

• An example this assumption holds is the additive hazards model.
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Full Isolation

• Full isolation refers to the case where the effects of treatment
components are separable at the population level.

• F(t) only involves prior path of states rather than covariates.

dΛa
1(t | F(t)) = dΛa

1(t | ∅) := dΛa
1(t),

dΛa
2(t | F(t)) = dΛa

2(t | ∅) := dΛa
2(t),

dΛa
3(t | F(t)) = dΛa

3(t | Ra = r) := dΛa
3(t; r).
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Counterfactual Cumulative Incidences

• Denote counterfactual cumulative incidences for three states by
F a

1 (t) = P(T a ≤ t,T a < Ra), F a
2 (t) = P(Ra ≤ t,Ra ≤ T a) and

F a
3 (t) = P(T a ≤ t,Ra ≤ T a), respectively.

• The counterfactual cumulative incidence of primary event becomes
F a(t) = P(T a ≤ t) = F a

1 (t) + F a
3 (t).

• The counterfactual cumulative incidences

F
a=(a1,a2,a3)
1 (t) =

∫ t

0

exp{−Λa1
1 (s)− Λa2

2 (s)}dΛa1
1 (s),

F
a=(a1,a2,a3)
2 (t) =

∫ t

0

exp{−Λa1
1 (s)− Λa2

2 (s)}dΛa2
2 (s),

F
a=(a1,a2,a3)
3 (t) =

∫ t

0

exp{−Λa1
1 (s)− Λa2

2 (s)}[1− exp{−Λa3
3 (t; s)}]dΛa2

2 (s).
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Definition of Separable Pathway Effects

• The total treatment effect is decomposed as

F a=(1,1,1)(t)− F a=(0,0,0)(t)

= {F a=(1,0,0)(t)− F a=(0,0,0)(t)}+ {F a=(1,1,1)(t)− F a=(1,0,0)(t)}
:= SPE0→1(t; 0, 0) + SPE0→3(t; 1)

= {F a=(1,0,0)(t)− F a=(0,0,0)(t)}+ {F a=(1,1,0)(t)− F a=(1,0,0)(t)}
+ {F a=(1,1,1)(t)− F a=(1,1,0)(t)}

:= SPE0→1(t; 0, 0) + SPE0→2(t; 1, 0) + SPE2→3(t; 1, 1).
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Identification of Potential Hazards

Theorem 1 (Identification)
Under Assumptions 1–4 and full isolation, for 0 ≤ t ≤ τ , the potential
transition hazards

dΛa
1(t) =

E{I (t ≤ T̃ < t + dt, δT (1− δR) = 1,A = a)/P(A = a | X )}
E{I (T̃ ≥ t, R̃ ≥ t,A = a)/P(A = a | X )}

,

dΛa
2(t) =

E{I (t ≤ R̃ < t + dt, δR = 1 | A = a)/P(A = a | X )}
E{I (T̃ ≥ t, R̃ ≥ t,A = a)/P(A = a | X )}

,

dΛa
3(t; r) =

E{I (t ≤ T̃ < t + dt, R̃ = r , δT δR = 1,A = a)/P(A = a | X )}
E{I (T̃ ≥ t, R̃ = r , δR = 1,A = a)/P(A = a | X )}

.

The separable pathway effects are identifiable.
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Weighted Counting Processes

• Let wi (aj) = I{Ai = aj}/P(Ai = aj | Xi ).

• Define weighted counting processes, at-risk processes and residuals
with respect to dΛa1

1 (t) and dΛa2
2 (t) as follows:

N1(t; a1) =
n∑

i=1

wi (a1)I{T̃i ≤ t, R̃i > t, δTi = 1},

N2(t; a2) =
n∑

i=1

wi (a2)I{R̃i ≤ t, T̃i ≥ t, δRi = 1},

Yj(t; aj) =
n∑

i=1

wi (aj)I{T̃i ≥ t, R̃i ≥ t},

Y w
j (t; aj) =

n∑
i=1

wi (aj)
2I{T̃i ≥ t, R̃i ≥ t},

Mj(t; aj) =

∫ t

0

{
dNj(s; aj)− Yj(s; aj)dΛ

aj
j (s)

}
, j = 1, 2.
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Weighted Counting Processes

• To yield well-defined estimators for Λa3
3 (t; s), processes N3(t; r , a3)

and Y3(t; r , a3) should be refined so that Y3(t; r , a3) is nonzero and

M3(t; r , a3) =

∫ t

r
{dN3(s; r , a3)− Y3(s; r , a3)dΛa3

3 (s; r)}

is a martingale with respect to some filter.

• To ensure that Y3(t; r , a3) is left-continuous, we assume that the
intermediate event happens just before the primary event if Ri = Ti .

• For example, we can assume Markovness or semi-Markovness for the
transition from State 2 to State 3.
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Markovness

• Under Markov assumption dΛa3
3 (t; r) = dΛa3

3,ma.(t), let

N3(t; r , a3) = N3,ma.(t; a3) =
n∑

i=1

wi (a3)I{T̃i ≤ t, δTi δ
R
i = 1},

Y3(t; r , a3) = Y3,ma.(t; a3) =
n∑

i=1

wi (a3)I{T̃i ≥ t, R̃i ≤ t, δRi = 1},

Y w
3 (t; r , a3) = Y w

3,ma.(t; a3) =
n∑

i=1

wi (a3)2I{T̃i ≥ t, R̃i ≤ t, δRi = 1},

M3(t; r , a3) = M3,ma.(t; a3) =

∫ t

0

{
dN3,ma.(s; a3)− Y3,ma.(s; a3)dΛa3

3,ma.(s)
}
.
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Semi-Markovness

• Under semi-Markov assumption dΛa3
3 (t; r) = dΛa3

3,sm.(t − r), let

N3(t; r , a3) = N3,sm.(u; a3) =
n∑

i=1

wi (a3)I{T̃i − R̃i ≤ u, δTi δ
R
i = 1},

Y3(t; r , a3) = Y3,sm.(u; a3) =
n∑

i=1

wi (a3)I{T̃i − R̃i ≥ u, δRi = 1},

Y w
3 (t; r , a3) = Y w

3,sm.(u; a3) =
n∑

i=1

wi (a3)2I{T̃i − R̃i ≥ u, δRi = 1},

M3(t; r , a3) = M3,sm.(u; a3) =

∫ u

0

{
dN3,sm.(s; a3)− Y3,sm.(s; a3)dΛa3

3,sm.(s)
}
.
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Estimators for Cumulative Hazards

• The generalized Nelson-Aalen estimators for cumulative hazards are

Λ̂a1
1 (t) =

∫ t

0

dN1(s; a1)

Y1(s; a1)
, Λ̂a2

2 (t) =

∫ t

0

dN2(s; a2)

Y2(s; a2)
,

Λ̂a3
3 (t; r) =

∫ t

r

dN3(s; r , a3)

Y3(s; r , a3)
.

• The residuals {Mj(t; aj) : j = 1, 2, 3(ma. and sm.)} are martingales
with respect to filters

Faj
1 (t) = {wi (a1), I (T a1

i ≥ s,Ra1

i ≥ s,C a1

i ≥ s) : s ≤ t, i = 1, . . . , n},
Faj

2 (t) = {wi (a2), I (T a2

i ≥ s,Ra2

i ≥ s,C a2

i ≥ s) : s ≤ t, i = 1, . . . , n},
Fa3

3,ma.(t) = {wi (a3), I (T a3

i ≥ s,T a3

i ≥ Ra3

i ,C
a3

i ≥ s) : s ≤ t, i = 1, . . . , n},
Fa3

3,sm.(t) = {wi (a3), I (T a3

i − Ra3

i ≥ s,C a3

i − Ra3

i ≥ s) : s ≤ t, i = 1, . . . , n},

with var{dMj(t; aj) | F
aj
j (t)} = Y w

j (t; aj)dΛ
aj
j (t).
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Weak Convergence of Estimators

Theorem 2 (Asymptotic distribution)

Under Assumptions 1–4 and Y−1
j (τ ; aj) = op(n−1/2) for

j = 1, 2, 3(ma. and sm.), the empirical process n1/2{F̂ a(·)− F a(·)}
converges to

n1/2{G a
1 (·) + G a

2 (·) + G a
3 (·)},

whose limiting distribution is a Gaussian process.
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Asymptotic Convergence: Markovness

Corollary 3 (Asymptotic distribution under Markovness)

Under Assumptions 1–4, if the hazard dΛa3
3 (t; r) is Markov, i.e.,

dΛa3
3 (t; r) = dΛa3

3,ma.(t) for every r ∈ [0, τ ], then

n1/2{F̂ a(t)− F a(t)} d−→ N{0, σ2(t)}

on t ∈ [0, τ ], with

σ2(t) = limE

{∫ t

0

[1− F a(t)− {F a
2 (s)− F a

3 (s)} exp{Λa3
3 (s)− Λa3

3 (t)}]2 nY w
1 (s; a1)

Y1(s; a1)2
dΛa1

1 (s)

+

∫ t

0

[1− F a(t)− {1− F a(s)} exp{Λa3
3 (s)− Λa3

3 (t)}]2 nY w
2 (s; a2)

Y2(s; a2)2
dΛa2

2 (s)

+

∫ t

0

[{F a
2 (s)− F a

3 (s)} exp{Λa3
3 (s)− Λa3

3 (t)}]2 nY w
3 (s; a3)

Y3(s; a3)2
dΛa3

3 (s)

}
.
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Asymptotic Convergence: Semi-Markovness

Corollary 4 (Asymptotic distribution under semi-Markovness)

Under Assumptions 1–4, if the hazard dΛa3
3 (t; r) is semi-Markov, i.e.,

dΛa3
3 (t; r) = dΛa3

3,sm.(t − r) for every r ∈ [0, τ ], then

n1/2{F̂ a(t)− F a(t)} d−→ N{0, σ2(t)}

on t ∈ [0, τ ], with

σ2(t) = limE

{∫ t

0

[
1− F a

1 (t)− F a
2 (t) +

∫ t

s
exp{−Λa3

3 (t − u)}dF a
2 (u)

]2 nY w
1 (s; a1)

Y1(s; a1)2
dΛa1

1 (s)

+

∫ t

0

[
{1− F a

1 (u)− F a
2 (u)} exp{−Λa3

3 (t − u)}
∣∣∣t
s

+

∫ t

s
exp{−Λa3

3 (t − u)}dF a
2 (u)

]2 nY w
2 (s; a2)

Y2(s; a2)2
dΛa2

2 (s)

+

∫ t

0

[∫ t−s

0
exp{−Λa3

3 (t − u)}dF a
2 (u)

]2 nY w
3 (s; a3)

Y3(s; a3)2
dΛa3

3 (s)

}
.
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Uniform Convergence for Mixtures

Theorem 5 (Uniform convergence)

Suppose dΛa3
3 (t; r) is a linear combination of dΛa3

3,ma.(t) and dΛa3
3,sm.(t − r),

dΛa3
3 (t; r) = (1− κ)dΛa3

3,ma.(t) + κdΛa3
3,sm.(t − r)

where κ ∈ [0, 1] is a prespecified parameter. Under Assumptions 1–4,

sup
t∈[0,τ ]

∣∣∣F̂ a(t)− F a(t)
∣∣∣ p−→ 0.
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Hypotheses

• To detect on which pathways treatment effects exist, we shall conduct
hypothesis tests on separable pathway effects SPE0→1, SPE0→2 and
SPE2→3.

• We consider testing three potential hazards here:

H1
0 : dΛ1

1(t) = dΛ0
1(t),∀t ≤ τ vs. H1

1 : dΛ1
1(t) 6= dΛ0

1(t),∃t ≤ τ,
H2

0 : dΛ1
2(t) = dΛ0

2(t),∀t ≤ τ vs. H2
1 : dΛ1

2(t) 6= dΛ0
2(t),∃t ≤ τ,

H3
0 : dΛ1

3(t) = dΛ0
3(t),∀t ≤ τ vs. H3

1 : dΛ1
3(t) 6= dΛ0

3(t),∃t ≤ τ.

• When the null hypothesis holds, the corresponding separable pathway
effect is zero.
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Test Statistics

• Define the weighted logrank statistics with a left-continuous weight
ω(t)

Uj =

∫ τ

0

ω(t)
Yj(t; 1)dNj(t; 0)− Yj(t; 0)dNj(t; 1)

Yj(t; 1) + Yj(t; 0)
, j = 1, 2, 3(ma. or sm.).

Theorem 6 (Weighted logrank tests)

Under the null hypothesis H j
0, we have n−1/2Uj

d−→ N(0, σ2
j ), where

σ2
j = E

{∫ τ

0

ω(t)2
Yj(t; 1)2Y w

j (t; 0) + Yj(t; 0)Y w
j (t; 1)

n{Yj(t; 1) + Yj(t; 0)}2
dΛ

aj
j (t)

}
, j = 1, 2, 3(ma. or sm.).
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Partial Isolation

• Partial isolation refers to the case where the effects of treatment
components are separable given all history involving covariates and
path of states.

• First we assume that F(t) consists of baseline covariates and current
status (Markovian).

• Identification is straightforward by conditioning on baseline covariates.
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Estimation Model

• Cox regression is adopted to model three hazard functions for the
direct primary outcome event, intermediate event and all-cause
primary outcome event respectively,

Λa
1(t; x) = Λ01(t) exp(β10 + β1xx + β1aa),

Λa
2(t; x) = Λ02(t) exp(β20 + β2xx + β2aa),

Λa(t; x) = Λ0(t) exp(β00 + β0xx + β0aa),

where Λ0j(t) (j = 1, 2, 0) is an unknown baseline hazard function.

• The hazard for the indirect event is solved from

Λa
3(t; x) =

∫ t

0

dF a(s; x)− dF a
1 (s; x)

F a
1 (s; x) + F a

2 (s; x)− F a(s; x)
,

where F a
1 (t; x) =

∫ t
0 exp{−Λa

1(s; x)− Λa
2(s; x)}dΛa

1(s; x),

F a
2 (t; x) =

∫ t
0 exp{−Λa

1(s; x)− Λa
2(s; x)}dΛa

2(s; x) and
F a(t; x) = 1− exp{−Λa(s; x)}.
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Time-Varying Covariates

• In the presence of time-varying covariates X (t), we let
F−(t) = {X (s), S(s) : s < t} be the information prior to time t
including time-varying covariates and prior statuses, and
F(t) = F−(t) ∪ X (t).

• Let λaj (t;F(t)) be the hazard of transiting to State j ∈ {1, 2, 3}
conditional on the information F(t) under the hypothetical treatment
a = (a1, a2, a3).

• Assumption 4’: Dismissible components conditional on F(t),

λaj (t;F(t)) = λ
aj
j (t;F(t)), j = 1, 2, 3.
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Conditional Isolation

• Assumption 2’: Positivity,

p(F(t) | A) · P(CA > t | A,F(t)) > 0, ∀ 0 ≤ t ≤ τ.

• Assumption 3’: Censoring does not depend on future information,

I (t ≤ C a < t + dt) ⊥⊥ F(u) | A = a,F(t), u > t, ∀ 0 ≤ t ≤ τ.

• Thus, the hazard of transition λj(t; aj ,F(t)) and the hazard of
censoring λC (t; aj ,F(t)) can be identified in the A = aj treatment
group.
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Dismissible Covariates

• Assuumption 5: The time-varying covariates X (t) consist of three
dismissible components.

• The transition density of covariates X (t) at time t under the
hypothetical treatment a = (a1, a2, a3)

p(X (t); a,F−(t)) = p(X2(t) | A = a2,F−(t))

· p(X1(t) | A = a1,F−(t),X2(t))

· p(X3(t) | A = a3,F−(t),X2(t),X1(t)).

• The counterfactual cumulative incidences can be identified by a
continuous generalization of g-formula.
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Identification Results 1

• Under Assumptions 1, 2’, 3’, 4’ and 5,

F
a=(a1,a2,a3)
1 (t) =

∫ t

0

∫
{X (u)}s0

exp{−Λ1(s; a1,F(s))− Λ2(s; a2,F(s))}λ1(s; a1,F(s))

s∏
0

{p(y ; a,F−(u))dy}ds,

F
a=(a1,a2,a3)
2 (t) =

∫ t

0

∫
{X (u)}s0

exp{−Λ1(s; a1,F(s))− Λ2(s; a2,F(s))}λ2(s; a2,F(s))

s∏
0

{p(y ; a,F−(u))dy}ds,

F
a=(a1,a2,a3)
3 (t) = F

a=(a1,a2,a3)
2 (t)−

∫ t

0

∫
{X (u)}s0

exp{−Λ1(s; a1,F(s))− Λ2(s; a2,F(s))

− Λ3(t; a3,F(t)) + Λ3(s; a3,F(s))}λ2(s; a2,F(s))

s∏
0

{p(y ; a,F−(u))dy}ds.
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Identification Results 2

• Another way to identify the counterfactual cumulative incidences is by
weighting.

• Let

W1(t; j , a, ak ) =
exp{−Λj (t; aj ,F(t)}
exp{−Λj (t; ak ,F(t)}

,

W2(t; a, ak ) =
t∏
0

{
P(A = a2 | X2(t),F−(s))

P(A = ak | X2(t),F−(s))

P(A = ak | F−(s))

P(A = a2 | F−(s))

·
P(A = a1 | X2(s),X1(s),F−(s))

P(A = ak | X2(s),X1(s)F−(s))

P(A = ak | X2(s),F−(s))

P(A = a1 | X2(s),F−(s))

·
P(A = a3 | X3(s),X2(s),X1(s),F−(s))

P(A = ak | X3(s),X2(s),X1(s)F−(s))

P(A = ak | X3(s),X2(s),F−(s))

P(A = a3 | X3(s),X2(s),F−(s))

}
,

W3(t; ak ) =
I (A = ak )

exp{−ΛC (t; ak ,F(t))}
.
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Identification Results 2

• Under Assumptions 1, 2’, 3’, 4’ and 5,

F
a=(a1,a2,a3)
1 (t) = E

[ ∫ t

0
W1(s; 2, a, a1)W2(s; a, a1)W3(s; a1)

· I (s ≤ T̃ < s + ds, δT (1− δR) = 1) | A = a1

]
,

F
a=(a1,a2,a3)
2 (t) = E

[ ∫ t

0
W1(s; 1, a, a2)W2(s; a, a2)W3(s; a2)

· I (s ≤ R̃ < s + ds, δR = 1) | A = a2

]
,

F
a=(a1,a2,a3)
3 (t) = F

a=(a1,a2,a3)
2 (t)− E

[ ∫ t

0
W1(s; 1, a, a2)W1(t; 3, a, a2)W1(s; 3, a, a2)−1

·W2(s; a, a2)W3(s; a2)I (s ≤ T̃ < s + ds, δT δR = 1) | A = a2

]
.
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Simulation Setup

• We generate a sample with n = 500 independent units.

• For i ∈ {1, . . . , n}, a dichotomized covariate Xi equals 1 or 0.5 with
equal probability.

• A unit receives treatment Ai = 1 with probability P(Xi/3 + 0.25).

• Consider three settings of hazards:

1 Setting 1: dΛa
1(t; x) = 0.15(x + a)dt, dΛa

2(t; x) = 0.1(x + a)dt,
dΛa

3(t; x) = 0.2dt. Both the Markov assumption and semi-Markov
assumption are satisfied.

2 Setting 2: dΛa
1(t; x) = 0.04(x + a)tdt, dΛa

2(t; x) = 0.02(x + a)tdt,
dΛa

3(t; x) = 0.05tdt. Only the Markov assumption is satisfied.
3 Setting 3: dΛa

1(t; x) = 0.04(x + a)tdt, dΛa
2(t; x) = 0.02(x + a)tdt,

dΛa
3(t; r , x) = 0.1(t − r)dt. Only the semi-Markov assumption is

satisfied.

• Assumptions 1–4 hold under these three settings.
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Estimated Cumulative Incidences
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Figure: Estimated cumulative incidence functions for F a=(0,0,0)(t).
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Estimated Cumulative Incidences
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Figure: Estimated cumulative incidence functions for F a=(1,0,0)(t).
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Estimated Cumulative Incidences
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Figure: Estimated cumulative incidence functions for F a=(1,0,1)(t).
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Estimated Cumulative Incidences
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Figure: Pointwise bias and intergrated bias of estimated cumulative incidences of
the proposed method using Markov, using semi-Markov, and Huang’s methodin
estimating F a=(0,0,0)(t).
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Figure: Pointwise bias and intergrated bias of estimated cumulative incidences of
the proposed method using Markov, using semi-Markov, and Huang’s method in
estimating F a=(1,0,0)(t).
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Figure: Pointwise bias and intergrated bias of estimated cumulative incidences of
the proposed method using Markov, using semi-Markov, and Huang’s methodin
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Empirical Type I Error Rate and Power

Table: The empirical type I error rate (power) of tests

Setting
Hypotheses

satisfied
n = 100 n = 500

H1
0 H2

0
H3

0
(ma.)

H3
0

(sm.)
H1

0 H2
0

H3
0

(ma.)
H3

0
(sm.)

1 None 0.8539 0.6822 0.3399 0.3580 1.0000 0.9997 0.9488 0.9567

H1
0 0.0453 0.7757 0.3709 0.3767 0.0407 1.0000 0.9675 0.9703

H2
0 0.9067 0.0434 0.2856 0.3051 1.0000 0.0446 0.8774 0.8854

H3
0 0.8539 0.6822 0.0559 0.0545 1.0000 0.9997 0.0515 0.0518

H2
0 ,H

3
0 0.9067 0.0434 0.0568 0.0586 1.0000 0.0446 0.0508 0.0524

All 0.0415 0.0474 0.0542 0.0522 0.0412 0.0430 0.0503 0.0502
2 None 0.8828 0.5918 0.2674 0.1958 1.0000 0.9993 0.8966 0.7338

H1
0 0.0436 0.6976 0.3003 0.2564 0.0435 1.0000 0.9356 0.8760

H2
0 0.9190 0.0450 0.2305 0.1890 1.0000 0.0449 0.7922 0.6501

H3
0 0.8828 0.5918 0.0537 0.0636 1.0000 0.9993 0.0504 0.0780

H2
0 ,H

3
0 0.9190 0.0450 0.0586 0.0594 1.0000 0.0449 0.0516 0.0575

All 0.0457 0.0476 0.0537 0.0544 0.0471 0.0463 0.0495 0.0516
3 None 0.8784 0.5912 0.1977 0.2327 1.0000 0.9985 0.8652 0.8325

H1
0 0.0415 0.6957 0.1438 0.2404 0.0449 0.9999 0.7501 0.8519

H2
0 0.9136 0.0463 0.1479 0.2080 1.0000 0.0502 0.6648 0.7104

H3
0 0.8784 0.5912 0.0399 0.0594 1.0000 0.9985 0.0810 0.0558

H2
0 ,H

3
0 0.9136 0.0463 0.0415 0.0606 1.0000 0.0502 0.0510 0.0521

All 0.0458 0.0450 0.0317 0.0580 0.0426 0.0494 0.0294 0.0536
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Allogeneic Stem Cell Transplantation

• Allogeneic stem cell transplantation is a well applied therapy to treat
leukemia, including two sorts of transplant modalities: human
leukocyte antigens matched sibling donor transplantation (MSDT)
and haploidentical stem cell transplantation from family (Haplo-SCT).

• MSDT has long been regarded as the first choice of transplantation
because MSDT leads to lower transplantation related mortality, also
known as non-relapse mortality (NRM).

• Another source of mortality is due to relapse, known as relapse related
mortality (RRM).

• In recent years, some benefits of Haplo-SCT have been noticed that
patients with positive pre-transplantation minimum residual disease
(MRD) undergoing Haplo-SCT have better prognosis in relapse.

• The mechanism of how transplant modalities can affect overall
survival needs further exploration.
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Data

• A total of n = 303 patients with positive MRD undergoing allogeneic
stem cell transplantation are included in our study.

• Among these patients, 65 received MSDT (Ai = 1) and 238 received
Haplo-SCT (Ai = 0).

• Let Ri be the time of relapse and Ti be the time of death after
transplantation.

• In the MSDT group, 47.7% individuals were observed to experience
relapse and 53.8% mortality. In the Haplo-SCT group, 29.0%
individuals were observed to experience relapse, and 36.6% mortality.

• Age, disease status (CR1 or CR>1), diagnosis (T-ALL or B-ALL) are
found to be related with relapse or mortality.
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Real Data Application

• In the multi-state model, States 1, 2 and 3 refer to NRM, relapse and
RRM, respectively.

• The total effect of mortality can be decomposed into three separable
pathway effects: one on NRM SPE0→1(t; 0, 0), one on relapse
SPE0→2(t; 1, 0), and the other on RRM SPE2→3(t; 1, 1).

• We maintain the semi-Markov assumption, because RRM usually
happens soon after relapse, making it reasonable to assume that the
hazard of RRM after relapse relies on how long it passed after relapse
rather than the duration from transplantation to relapse.
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Estimated Separable Pathway Effects
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Figure: Counterfactual cumulative incidences of mortality, compared between (1)
F a=(1,0,0)(t) and F a=(0,0,0)(t), (2) F a=(1,1,0)(t) and F a=(1,0,0)(t), (3) F a=(1,1,1)(t)
and F a=(1,1,0)(t).
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Estimated Separable Pathway Effects, Partial Isolation
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Figure: Counterfactual cumulative incidences of mortality, compared between (1)
F a=(1,0,0)(t) and F a=(0,0,0)(t), (2) F a=(1,1,0)(t) and F a=(1,0,0)(t), (3) F a=(1,1,1)(t)
and F a=(1,1,0)(t).
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Sensitivity Analysis on Semi-Markovness
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Figure: Sensitivity analysis of separable pathway effects, compared between (1)
F a=(1,0,0)(t) and F a=(0,0,0)(t), (2) F a=(1,1,0)(t) and F a=(1,0,0)(t), (3) F a=(1,1,1)(t)
and F a=(1,1,0)(t).
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P-Values of Tests

Table: Some hypothesis tests in the leukemia data

Test Interpretation p-value

Total The total treatment effect on mortality 0.0315
SPE0→1 The treatment effect on transition rates from

transplantation to NRM, i.e., the separable
pathway effect via NRM

0.3060

SPE0→2 The treatment effect on transition rates from
transplantation to relapse, i.e., the separable
pathway effect via relapse

0.0105

SPE2→3 The treatment effect on transition rates from
relapse to RRM, i.e., the separable pathway ef-
fect via RRM (assuming semi-Markov)

0.3098
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Results

• We find that Haplo-SCT lowers the overall mortality by reducing the
risk of relapse compared with MSDT.

• The differences between Haplo-SCT and MSDT on NRM and RRM
are not significant.

• Since Halpo-SCT is more accessible than MSDT, Haplo-SCT can
serve as an alternative to MSDT.
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Concluding Remarks

• We studied the identification and estimation of the counterfactual
cumulative incidence of the primary (terminal) event when there is an
intermediate (non-terminal) event.

• Covariates are incorporated in the hazards by inverse probability
weighting.

• We define population-level separable pathway effects based on
counterfactual cumulative incidences.

• Confidence intervals and hypothesis testings are available for the
counterfactual cumulative incidences and separable pathway effects.

• The concept of separable pathway effects provides an opportunity to
understand the causal pathways of treatment effects on the terminal
event.
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Possible Extensions

• Semiparametrically efficient estimation under full isolation and partial
isolation.

• Identification under partial isolation or with time-varying covariates
has been proved. But estimation and inference are challenging.
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